版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十讲 排列与组合课程类型:复习 预习 习题 针对学员基础:基础 中等 优秀授课班级授课日期学员高二数学16班5月25日D组杨佩云本章主要内容:1.加法计数原理与乘法计数原理;2.排列数与组合数;3.排列的综合应用;4.组合的综合应用.本章教学目标:1.掌握分类用加法分步用乘法两类计数原理;2.掌握排列数与组合数的运算方法;3.掌握排列与组合的综合应用.第一节 计数原理晓明同学准备周六从射洪到成都去玩,他可选择乘坐汽车,一天有4班,也可选择火车,一天有3班,那么晓明从射洪到成都共有多少中选择?若晓明到了成都之后有准备去都江堰,从成都到都江堰的汽车有6班,火车有2班,那么晓明从射洪到都江堰共有多
2、少种选择?课前导入【知识与方法】一分类加法计数原理1完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法那么完成这件事共有N 种不同的方法2完成一件事有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第n类方案中有mn种不同的方法,则完成这件事共有N 种不同的方法二分步乘法计数原理1完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N 种不同的方法2完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,则完成这件事共有N 种
3、不同的方法注意:1.在分类加法计数原理中,每类方案中的方法都能完成这件事 2.在分步乘法计数原理中,事情是分多步完成的,其中任何一个单独的步骤都不能完成这件事【例题与变式】题型一 计数原理【例1】某大学食堂备有6种荤菜,5种素菜,3种汤,现要配成一荤一素一汤的套餐,试问要“完成的这件事”指的是什么?若配成“一荤一素”是否“完成了这件事”?要“完成配成套餐”这件事需分类,还是分步,为什么?【例2】展开后共有多少项?【例3】甲、乙、丙准备周末出去郊游,问共有多少种情况?【变式1】(a1a2a3)(b1b2b3)(c1c2c3c4)展开后共有_项. 【变式2】将5封信投入3个邮筒,不同的投法共有()
4、A53种 B35种 C3种 D15种【变式3】某校高一有6个班,高二有7个班,高三有8个班现选两个班的学生参加社会实践活动,若要求这两个班来自不同年级,则有不同的选法_种【变式4】(2019新课标)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为() A24 B18 C12 D9【例4】有一个圆被两相交弦分成四块,现用5种不同的颜料给这四块涂色,要求相邻的两块颜色不同,每块只涂一种颜色,共有多少种涂色方法?【例5】(2019南开区一模)如图所示的几何体是由一个三棱锥P-ABC与三棱柱ABC-A1B1C1组合而成,
5、现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有()A6种 B9种 C12种 D36种【变式5】(2019泸州模拟)如图,一环形花坛分成A,B,C,D四块,现有3种不同的花供选种,要求在每块里种一种花,且相邻的2块种不同的花,则不同的种法总数为() A12 B24 C18 D6【变式6】将红、黄、绿、黑四种不同的颜色涂在如图所示的图中,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?【例6】高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A16种B
6、18种C37种D48种【变式7】3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?【例7】用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)四位密码?(2)四位数?(3)四位奇数?【变式8】(2019四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有() A144个 B120个 C96个 D72个1某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有( )A6种 B7种 C8种 D9种23名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有
7、_种. 3甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有_种不同的推选方法4. 用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔问:该板报有多少种书写方案?1.实际完成情况:按计划完成;超额完成,原因分析_;未完成计划内容,原因分析_.2.授课及学员问题总结:第二节 排列与组合的应用晓明同学准备周天用自己存了很久的零花钱买一注七星彩,你能帮他算算他中一等奖的概率大概是多少吗?(假定每个数字只能出现一次)课前导入【知识与方法】一排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1)(
8、2)C性质(1)0!1;An!(2)CC;CCC二排列与组合的应用1.特殊元素与特殊位置需要_.2.相邻问题用_.3.不相邻问题用_.4.定序问题用_.5.平均分组问题用_.6.元素相同问题用_.三排列组合综合应用的常用策略1.正难则反策略.2.若题中有多个需要满足的要求,则逐个击破,并优先考虑特殊元素.【例题与变式】类型一 特殊元素和特殊位置优先策略 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。【例1
9、】由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.【变式1】(2019四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有() A144个 B120个 C96个 D72个【例2】7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?【变式2】六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A192种 B216种 C240种 D288种要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也
10、必须排列.类型二 相邻元素捆绑策略【例1】7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.【例2】某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 .【变式1】(2019滨州一模)5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是() A40 B36 C32 D24【变式2】(2019丰台区一模)小明跟父母、爷爷奶奶一同参加中国诗词大会的现场录制,5人坐成一排若小明的父母至少有一人与他相邻,则不同坐法的总数为() A60 B72 C84 D96 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端.类型三 不相邻问题插
11、空策略【例1】一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?【例2】已知两个不同的苹果,两个不同的梨子和一个桃子,随机把三种水果排成一排,则相同水果都不相邻的概率为_.【变式1】某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 .【变式2】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A72 B120 C144 D168【变式3】(2019·北京西城区质检)把5件不同产品摆成一排,若产
12、品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有_种. 定序问题可以用倍缩法,还可转化为占位插.空模型处理类型四 定序问题倍缩空位插入策略【例1】7人排队,其中甲乙丙3人顺序一定共有多少不同的排法.【例2】有4名男生,3名女生。3名女生高矮互不等,将7名学生排成一行,要求从左到右,女生从矮到高排列,有多少种排法?【变式1】期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?【变式2】有5个同学排队,问:乙不能站在甲前面,丙不能站在乙前面的排法有多少种?类型五 平均分组问题除法策略 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)避免重
13、复计数.【例1】6本不同的书平均分成3堆,每堆2本共有多少分法?【例2】(2019重庆模拟)将甲乙等5名交警分配到三个不同的路口疏通交通,每个路口至少一人,且甲乙在同一路口的分配方案有_种.【例3】(2019西安校级二模)某中学数学组来了5名即将毕业的大学生进行教学实习活动,现将他们分配到高一年级的1,2,3三个班实习,每班至少一名,最多两名,则不同的分配方案有( ) A30种 B90种 C150种 D180种【变式1】将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?【变式2】某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方
14、案种数为_.【变式3】(2019南雄市二模)5位大学毕业生分配到3家单位,每家单位至少录用1人,则不同的分配方法共有() A25种 B60种 C90种 D150种类型六 重排问题求幂策略 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种.【例】把6名实习生分配到7个车间实习,共有多少种不同的分法.【变式1】某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 .【变式2】某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,
15、下电梯的方法 . 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.类型六 多排问题直排策略【例】8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法.【变式】有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 .类型七 元素相同问题隔板策略 将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为.【例】有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?【变式1】10个相同的球装5个盒中,每盒至少一
16、有多少装法?【变式2】求这个方程组的自然数解的组数(若改为正整数解呢?) 1有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名请你分析一下,这五位学生的名次排列的种数为()A6 B.18 C.20 D.242将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A10 B.20 C.30 D.403我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A18个 B.15个 C.12个 D.
17、9个4(2019·唐山联考)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A24对 B.30对 C.48对 D.60对5(2019·青岛二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A18种 B.24种 C.36种 D.72种6.(2019·福建福州联考)甲、乙等5人在9月3号参加了纪念抗日战争胜利70周年阅兵庆典后,在天安门广场排成一排拍照留念,甲和乙必须相邻且都不站在两端的排法有() A12种 B.24种 C.48种 D.120种7(2019·佛山质检)设集合A(x1,x2,x3,x4,x5)|x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年房产居间合同模板2篇
- 山东2025年山东管理学院招聘80人(长期招聘岗位)笔试历年参考题库附带答案详解
- 中山2024年广东中山市人民政府东区街道办事处所属事业单位第二期招聘3人笔试历年参考题库附带答案详解
- 2025年广西桂林市林业和园林局局属事业单位直接考核招聘历年高频重点提升(共500题)附带答案详解
- 2025年广西桂林市临桂区自然资源局招聘8人历年高频重点提升(共500题)附带答案详解
- 2025年广西柳州鱼峰区白沙镇人民政府招聘编外2人高频重点提升(共500题)附带答案详解
- 2025年广西柳州市柳江区民宗局招聘工作人员1人历年高频重点提升(共500题)附带答案详解
- 2025年广西柳州市柳北区石碑坪镇人民政府招聘编外合同制协办员3人高频重点提升(共500题)附带答案详解
- 2025年广西柳州市城中区招聘编外合同制审计专业技术人员1人历年高频重点提升(共500题)附带答案详解
- 2025年广西柳州市不动产登记中心招聘编外聘用人员3人历年高频重点提升(共500题)附带答案详解
- 药学技能竞赛标准答案与评分细则处方
- 山东省潍坊市2023-2024学年高二下学期期末考试 历史 含解析
- 中医诊疗规范
- 报建协议书模板
- 第14课《叶圣陶先生二三事》导学案 统编版语文七年级下册
- 贵州省2024年中考英语真题(含答案)
- 施工项目平移合同范本
- 北师大版八年级上册数学期中综合测试卷(含答案解析)
- (高清版)JTGT 3360-01-2018 公路桥梁抗风设计规范
- 幼儿园创意美劳培训
- 同济大学第四版线性代数课后习题答案
评论
0/150
提交评论