人口指数增长模型_第1页
人口指数增长模型_第2页
人口指数增长模型_第3页
人口指数增长模型_第4页
人口指数增长模型_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数学模型 实验报告实验名称:如何预报人口的增长 成绩:_实验日期 :2009年4 月22 日实验报告日期:2009年4 月 26 日人类文明发展到今天,人们越来越意识到地球资源的有限性,我们感受到地球在变小,人口与资源之间的矛盾日渐突出,人口问题已成为当前世界上被最普遍关注的问题之一,当然人口增长规律的发现以及人口增长的预测对一个国家制定比较长远的发展规划有着非常重要的意义.本节介绍几个经典的人口模型.3.3.1模型I:人口指数增长模型(马尔萨斯Malthus,1766-1834)1) 模型假设时刻t人口增长的速率,即单位时间人口的增长量,与当时人口数成正比,即人口增长率为常数r.以P(t)表

2、示时刻t某地区(或国家)的人口数,设人口数P(t)足够大,可以视做连续函数处理,且P(t)关于t连续可微.2) 模型建立及求解据模型假设,在t到时间内人口数的增长量为,两端除以,得到,即,单位时间人口的增长量与当时的人口数成正比.令,就可以写出下面的微分方程:,如果设时刻的人口数为,则满足初值问题:(1)下面进行求解,重新整理模型方程(1)的第一个表达式,可得,两端积分,并结合初值条件得.显然,当时,此时人口数随时间指数地增长,故模型称为指数增长模型(或Malthus模型).如下图3-2所示.3) 模型检验19世纪以前欧洲一些地区的人口统计数据可以很好的吻合.19世纪以后的许多国家,模型遇到了

3、很大的挑战.注意到,而我们的地球是有限的,故指数增长模型(Malthus模型)对未来人口总数预测非常荒谬,不合常理,应该予以修正.图3-24) 模型讨论为了做进一步的讨论,阐明此模型组建过程中所做的假设和限制是非常必要的.我们把人口数仅仅看成是时间的函数,忽略了个体间的差异(如年龄,性别,大小等)对人口增长的影响.假定是连续可微的.这对于人口数量足够大,而生育和死亡现象的发生在整个时间段内是随机的,可认为是近似成立的.人口增长率是常数,意味着人处于一种不随时间改变的定常的环境当中.模型所描述的人群应该是在一定的空间范围内封闭的,即在所研究的时间范围内不存在有迁移(迁入或迁出)现象的发生.不难看

4、出,这些假设是苛刻的,不现实的,所以模型只符合人口的过去结果而不能用于预测未来人口.3.3.2模型II:阻滞增长模型(Logistic)一个模型的缺陷,通常可以在模型假设当中找到其症结所在或者说,模型假设在数学建模过程中起着至关重要的作用,它决定了一个模型究竟可以走多远.在指数增长模型中,我们只考虑了人口数本身一个因素影响人口的增长速率,事实上影响人口增长的另外一个因素就是资源(包括自然资源,环境条件等因素).随着人口的增长,资源量对人口开始起阻滞作用,因而人口增长率会逐渐下降.许多国家的实际情况都是如此.定性的分析,人口数与资源量对人口增长的贡献均应当是正向的.1) 模型假设地球上的资源有限

5、,不妨设为1;而一个人的正常生存需要占用资源(这里事实上也内在的假定了地球的极限承载人口数为);在时刻t,人口增长的速率与当时人口数成正比,为简单起见也假设与当时剩余资源成正比;比例系数表示人口的固有增长率;设人口数P(t)足够大,可以视做连续变量处理,且P(t)关于t连续可微.2) 模型建立及求解由模型假设,可将人口数的净增长率视为人口数P(t)的函数,由于资源对人口增长的限制,应是P(t) 的减函数,特别是当P(t) 达到极限承载人口数时,应有净增长率,当人口数P(t)超过时,应当发生负增长.基于如上想法,可令.用代替指数增长模型中的导出如下微分方程模型:(2)这是一个Bernoulli方

6、程的初值问题,其解为.在这个模型中,我们考虑了资源量对人口增长率的阻滞作用,因而称为阻滞增长模型(或Logistic模型).其图形如图3-3所示.图3-33) 模型检验从图3-3可以看出,人口总数具有如下规律:当人口数的初始值时,人口曲线(虚线)单调递减,而当人口数的初始值时,人口曲线(实线)单调递增;无论人口初值如何,当,它们皆趋于极限值.4) 模型讨论阻滞增长模型从一定程度上克服了指数增长模型的不足,可以被用来做相对较长时期的人口预测,而指数增长模型在做人口的短期预测时因为其形式的相对简单性也常被采用.不论是指数增长模型曲线,还是阻滞增长模型曲线,它们有一个共同的特点,即均为单调曲线.但我

7、们可以从一些有关我国人口预测的资料发现这样的预测结果:在直到2030年这一段时期内,我国的人口一直将保持增加的势头,到2030年前后我国人口将达到最大峰值16亿,之后,将进入缓慢减少的过程这是一条非单调的曲线,即说明其预测方法不是本节提到的两种方法的任何一种.还有比指数增长模型,阻滞增长模型更好的人口预测方法吗 FS:PAGE事实上,人口的预测是一个相当复杂的问题,影响人口增长的因素除了人口基数与可利用资源量外,还和医药卫生条件的改善,人们生育观念的变化等因素有关,特别在做中短期预测时,我们希望得到满足一定预测精度的结果,比如在刚刚经历过战争或是由于在特定的历史条件下采纳了特殊的人口政策等,这

8、些因素本身以及由此而引起的人口年龄结构的变动就会变的相当重要,进而需要必须予以考虑. 一、实验目的 预报人口的增长变化规律,作出较准确的预报,为以后有效的控制人口增长提供依据,为设计型实验。二、实验内容根据统计资料得出的人口增长率不变的假设,建立人口指数增长模型。利用微积分数学工具视x(t)为连续可微函数,记t=0时人口为x0,人口增长率为常数r, 变有dx/dt=rx,x(0)=x0,解出x(t)=x0*exp(rt)。 三、实验环境MATLAB6.5四、实验步骤为了用数据进行线形最小二乘法的计算,故将x(t)=x0*exp(rt)两边取对数可得lnx(t)=lnx0*exp(rt),lnx

9、(t)=lnx0+rt,另y=lnx(t),a= lnx0,所以可得y= rt+a。根据所提供的数据用MATLAB函数p=polyfit(t,x,1)拟合一次多项式,然后用画图函数plot(t,x,+,t,x0*exp(rt),-),画出实际数据与计算结果之间的图形,看结果如何。利用1790-1900年的数据进行试验,程序如下:t=linspace(0,11,12);x=3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0;p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2)plot(t,x,+,t,x0*ex

10、p(r*t),-)利用1790-2000年的数据进行试验,程序如下:t=linspace(0,21,22);x=3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4;p=polyfit(t,log(x),1);r=p(1)x0=exp(p(2)plot(t,x,+,t,x0*exp(r*t),-)五、实验结果 以1790年至1900年的数据拟合y= rt+a,用软件计算可得r=0.2743/10年,x0=4.1884,下图为拟合的图象:以1790年至2000年的数据拟合y= rt+a,用软件计算可得r=0.2022/10年,x0=6.0450,下图为拟合的图象:六、实验讨论、结论 从图形1中可知,此模型基本上能够描述十九世纪以前美国人口的增长,因为+号基本上都在线上,说明拟合成功。 从图形2中可知,进入了20世纪以后,美国人口增长明显变慢,+号和曲线偏离很远,说明此模型已不在适用。 对未来预报人口有很重要的作用,比如采取措施来实行计划生育等有关问题。七、 参考资料马尔萨斯 美国一百多年的人口统计资料:年179018001810182018

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论