Solidworks有限元分析教程ppt课件_第1页
Solidworks有限元分析教程ppt课件_第2页
Solidworks有限元分析教程ppt课件_第3页
Solidworks有限元分析教程ppt课件_第4页
Solidworks有限元分析教程ppt课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有限元分析用户培训有限元分析用户培训Jim.YueDDS Software Co.企业企业需求需求与有限元分析与有限元分析 .3 有限元分析的主要步骤有限元分析的主要步骤 .3 COSMOS/Works 的的 用户界面用户界面 .3 COSMOS/Works 的工具条的工具条.8 COSMOS/Works 的选项对话框的选项对话框.9 COSMOS/Works 线性静力分析示例线性静力分析示例.13 线性静力分析:定义专题.13 线性静力分析:定义材料属性.14 线性静力分析:网格划分.30 线性静力分析:定义约束.42 线性静力分析:定义载荷.47 线性静力分析:求解.54 线性静力分析:观

2、察结果.55 COSMOS/Works 模态分析示例模态分析示例.13 模态分析:定义专题.13 模态分析:定义材料属性.14 模态分析:网格划分.30 模态分析:定义约束.42 模态分析:定义载荷.47 模态分析:求解.54 模态分析:观察结果.55 COSMOS/Works 结构优化示例结构优化示例.13 结构优化:定义专题.71 结构优化:定义优化目标.72 结构优化:定义优化变量.73 结构优化:定义阀值函数.74 结构优化:求解.75 结构优化:观察结果.79 COSMOS/Works 温度分析示例温度分析示例 .13 温度分析:定义专题.13 温度分析:定义材料属性.14 温度分析

3、:网格划分.30 温度分析:定义约束.42 温度分析:定义温度载荷.47 温度分析:求解.54 温度分析:观察结果.55 COSMOS/Works 屈服分析示例屈服分析示例 .13 COSMOS/Works 应用技巧的总结应用技巧的总结.13 企业需求与有限元分析企业需求与有限元分析Design Analysis 更少的样机:省钱 更短的周期:省时 更好的质量:质量有限元分析的主要步骤有限元分析的主要步骤前处理建立分析对象的有限元模型求解对有限元模型的计算工况进行求解后处理观察分析结果,评估设计是否符合要求Cosmos/Works有限元分析的步骤有限元分析的步骤建立几何模型定义材料属性定义边界

4、条件(约束和载荷)划分网格求解查看和评估结果修正, 重新, 细化Cosmos/Works的用户界面的用户界面Cosmos/Works的工具条的工具条定义、修正、删除专题定义材料生成有限元网格对当前专题进行计算在几何模型 / 有限元模型之间进行切换显示从所选的特征中选择面元Cosmos/Works的选项对话框的选项对话框Cosmos/Works线性静力分析线性静力分析 例1.支座分析 例2.轴承载荷 例3.壳单元,静水压 例4.Motion,远端载荷线性静力分析:定义专题线性静力分析:定义专题Displacement in the radial direction:Select “Axis1”

5、and then define displacement plot in X-direction (radial to the axis). Select deformation scale=1Right-click on the displacement plot icon “plot2” and then selectList selected”Average displacement of “pole piece lower” = -0.0019504” (decrease in radius)Average displacement of “pole piece upper” = 0.

6、007896 “ (increase in radius)Sum of these 2 displacement = 0.009846” Initial interfernce of 0.01”Hoop Stress (tangential):Select “Axis1” and then define stress plot in Y-direction (radial to the axis). Select deformation scale=1Right-click on the stress plot icon “plot2” and then selectList selected

7、”Negative stress on “pole piece lower” (compression)Positive stress on “pole piece upper” (tension)线性静力分析:定义材料属性线性静力分析:定义材料属性 Simulate parts which are separated by large gaps First run the model with small displacement option and look at the results If you see that there is a change in the orientati

8、on of the contact surfaces during loading or if the results doesnt look realistic, use large deflection option线性静力分析:网格划分线性静力分析:网格划分Open “RectangleGap.sldasm”Define a static study “smallcontact”Apply material “Alloy steel” to both partsApply a pressure of 725 psi on the top faceSelect the two front

9、faces and then apply restraint. Select Flat face option and then select “Normal to face”Fix the left semi-circular faceHide the loads/bc symbolsDefine “Surface” contact between the top face of the bottom leg and the perpendicular faceCreate mesh and runDefine a stress plot with scale factor = 1. Loo

10、k at the contact surface. 线性静力分析:定义约束线性静力分析:定义约束 Define a new static study “LargeDisp” Dragn drop the material and loads/bc folders from “small contact” study Right-click on the study name and click on properties. Select “Large displacement contact” option. Run the analysis Define a stress plot with

11、 scale factor = 1. Look at the contact area.线性静力分析:定义载荷线性静力分析:定义载荷 Simulate heat resistance between parts for thermal analysis Account for heat resistance of thin parts without actually modeling them!Define thermal conductivity at the contact area to model the properties of the glue between the chip

12、 and the substrate线性静力分析:求解线性静力分析:求解 Open “Thermal contact resistance_transistor.sldasm” Explode the model and set preferred units to “SI” and temperature units to “Kelvin” Define a thermal study “NoRes” Apply material “AISI 304” for “Voltage regulator” and “Copper” for Heat sink Define “Surface” co

13、ntact with No resistance between the contact faces Apply convection to all the faces of the model except the contact faces Film coefficient = 250 W/(m2.K) Bulk temperature = 298 K线性静力分析:观察结果线性静力分析:观察结果Apply Heat power = 25 W for “Voltage regulator”Mesh with default settings and run the analysisNotic

14、e the temperature distribution of the heat sinkDistributed Resistance:Define a new thermal study “DistRes”Dragn drop “Material” folder and Loads/Bc folder from NoRes study to DistRes studyEdit contact pair definition and define distributed resistance = 0.005 K.m2/W Total resistance = Distributed res

15、istance X Contact area = 0.005 X 0.0003392 = 14.7 K/WRun the study “DistRes”Notice the temperature distribution of the heat sinkThermal Contact Example (Contd) Probe the temperature value Define a thermal plot with mesh Right-click the plot icon and select Probe Pick all the nodes on the edge of bot

16、h the parts Click on the Plot icon to view the temperature variation from the top face of the voltage regulator to the bottom of the heat sink Thermal Contact Example (Contd)Total Resistance:Define a new thermal study “TotalRes”Dragn drop “Material” folder and Loads/Bc folder from NoRes study to Tot

17、alRes studyEdit contact pair definition and define Total resistance = 25 K/W Run the study “TotalRes”Notice the temperature distribution of the heat sinkLoad Simulation: Remote Loads Remote Loads Direct Transfer Flexible surface Applied as equivalent force & moment Rigid Beam Rigid surface Remot

18、e Restraint Rigid connection Model effect of a rigid virtual part between two facesForce/Moment from Motion Simulation at this point applied on the selected faceRemote Load ExampleOpen “RemoteLoadExample.sldasm”Define a static study “Remote”Apply material “Alloy steel”Fix the flat faceSelect “Coordi

19、nate system1” and the end face of the cantilever. Define remote load of 10N in the X direction. Create mesh and run. Double-click on “Plot1” under the stress folderAnimate the resultsCompare the plot results of “Remote” study with “Axial Tension” studyMotion Load Transfer Using Remote LoadsGo to SW

20、Add-in and click “COSMOS/Motion”Open “LoadTransferModel_With_Result.sldasm”Play the animation and save the load file for frame # 300Delete the motion resultsGo to CW menu, Import Motion Load and open this load file from “MotionLoadTransfer” directorySelect all the loads related to crank-1 and then c

21、lick OK.Open the part “crank”Youll see that there is a new study “Frame-300” with motion loads transferred as remote loadsApply material “Plain carbon steel”Go to study properties and select “FFEPlus” solver and “Inertia relief option”Run the analysisPostprocessing: Results in local CS Plotting List

22、ings Reaction forcesPostprocessing: Exploded views Plot results on SolidWorks exploded viewsPostprocessing: New tools Improved probing with graphing option List results by EntityWeb Reports Inclusion of report templates in the feature tree Saving of report setting Automatic creation of all plotsRepo

23、rt Example Open “ReportExample.sldasm” New option save JPEG files (Right-click on the Study name) Right-click on Report and click define Point to the logo file “ReportLogo.bmp” Point to the right stress AVI and VRML files Select option “Automatically update all plots in JPEG files”. Click OK. You can also get a print versionMaterial Supports orthotropic

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论