版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.2.1 2.2.1 对数与对数运算对数与对数运算 第一课时第一课时 对对 数数 1.1.庄子庄子: :一尺之棰,日取其半,万世一尺之棰,日取其半,万世不竭不竭 ,问,问4 4天还有多少尺?取多少次还天还有多少尺?取多少次还有有0.031250.03125尺尺?设取设取x x次还有次还有0.031250.03125尺尺问题提出问题提出( )( )x x0.031250.03125,求,求x=?x=?12 2. 2.截止到截止到19991999年底,我国人口约年底,我国人口约1313亿亿. .如果今后能将人口年平均增长率控制在如果今后能将人口年平均增长率控制在1%1%,那么过几年,那么过几年人
2、口人口数将达到数将达到1818亿?亿? 1313 (1(11 1) )x x1818,求,求x=?x=?即即 1.011.01x x ,求,求x=?x=?1813设过过x x年人口数将达到年人口数将达到18亿亿已知底数和幂的值,求指数已知底数和幂的值,求指数. . 3.3.上面的实际问题归结为一个什么上面的实际问题归结为一个什么数学问题?数学问题? 1.011.01x x ,求,求x=?x=?1813( )( )x x0.031250.03125,求,求x=?x=?12知识探究(一):知识探究(一):对数的概念对数的概念 思考思考1:1:2 24 4 2 22 2思考思考2:2:若若2 2x
3、x1616,则,则x x 若若2 2x x , ,则则x x 若若4 4x x8 8, 则则x x 若若2 2x x3 3, 则则x x411641234-2若若2 2x x3 3, 则则x x 苏格兰数学家纳皮尔在研究天文学过程中,为了简化其中的计算而发明了对数。满足满足2 2x x3 3的的x x的值,我们用的值,我们用loglog2 23 3表示,表示,即即x xloglog2 23 3,并叫做,并叫做“以以2 2为底为底3 3的对数的对数”. .思考思考3: 若若2 2x x1616,则,则x x 若若2 2x x , ,则则x x 若若4 4x x8 8, 则则x x 41若2x3
4、3, 则则x xlog23log216log241log48思考思考5: 5: 满足满足 , , , (其中(其中e=2.71828e=2.71828)的)的x x的值可分别怎的值可分别怎样表示?样表示?10 xNxeNX=log10NX=logeNx=log1.01181312思考思考4:4:前面问题中,前面问题中, , , 中的中的x x的值可分别怎的值可分别怎样表示?样表示?181.0113x ( )x x0.031250.03125x=log 0.03125 12 恩格斯曾经把对数的发明、解析几何的创始和微积分的建立并称为17世纪数学三大成就。 但是首先用指数来定义对数的是瑞士数学家欧
5、拉。思考思考1:1:指数与对数有什么关系?指数与对数有什么关系? 知识探究(二):知识探究(二):对数与指数的关系对数与指数的关系 指数与对数是可以等价且相互转化指数与对数是可以等价且相互转化a ax xN Nx xlogloga aN N当当a0a0,且,且a1a1时时思考思考3:3:当当a a0 0,且,且a1a1时,时,logloga a(-2-2),),logloga a0 0存在吗?为什么?由此能得到什么存在吗?为什么?由此能得到什么结论?结论? 设loga(-2)=x,则ax=-2而当a0,且a1时,恒有ax0设loga0=x,则ax=0 a a N N x x 指数式指数式a a
6、x xN N 指数的底数指数的底数 幂幂 幂指数幂指数 对数式对数式x xlogloga aN N 对数的底数对数的底数 真数真数 对数对数 思考思考2:2:在指数式在指数式a ax xN N和对数式和对数式x xlogloga aN N中,中,a a,x x,N N各自的地位有什么不同?各自的地位有什么不同? 思考思考4:4:根据对数定义,根据对数定义,logloga al l和和logloga aa a和和logloga aa an n(a0a0,a1a1)的值分别是多少?)的值分别是多少? 设loga1=x, 则ax=1,所以x=0,得loga1=0设logaa=x, 则ax=a,所以x
7、=1,得logaa=1设logaan=x, 则ax=an, 所以x=n,得logaan=n理论迁移理论迁移641 例例1.1.将下列指数式化为对数式,对数式将下列指数式化为对数式,对数式 化为指数式:化为指数式: (1) 51) 54 4625625 ; (2) 2; (2) 26 6 ; ; (3) (3) ( )( )m m5.735.73 ; (4) ; (4) ; ; (5) lg0.01= (5) lg0.01=; (6) ln10; (6) ln102.303.2.303.3116log21 例例2.2.求下列各式中的值:求下列各式中的值: (1)log1)log6464x x ;
8、 (2) log; (2) logx x8 86 ; 6 ; (3)lg100=x; (4) (3)lg100=x; (4)lnelne2 2 . .23例3 计算(1)log 8143(2) log0.30.09例例4:4:(1)已知已知a0a0,且,且a1a1时时,N0,证明 alogaN=N练习:(1)计算 2log25=_(2)已知log(x+3)(x2+3x)=1,求实数x的值。(3)已知loga3=m, logan=5,则a2m+n=_第二课时第二课时 对数的运算对数的运算2.2.1 2.2.1 对数与对数运算对数与对数运算 问题提出问题提出1.1.对数源于指数,对数与指数是怎样互
9、对数源于指数,对数与指数是怎样互化的?化的? 2.2.指数与对数都是一种运算,而且它们指数与对数都是一种运算,而且它们互为逆运算,指数运算有一系列性质,互为逆运算,指数运算有一系列性质,那么对数运算有那些性质呢?那么对数运算有那些性质呢? 知识探究(一):知识探究(一):积与商的对数积与商的对数思考思考2:2:将将loglog2 23232loglog2 24 4十十loglog2 28 8推广到一推广到一般情形有什么结论?般情形有什么结论?思考思考1:1:求下列三个对数的值:求下列三个对数的值:loglog2 23232, loglog2 24 4 , loglog2 28 8你能发现这三个
10、对数之你能发现这三个对数之间有哪些内在联系?间有哪些内在联系?思考思考3:3:如果如果a a0 0,且,且a1a1,M M0 0,N N0 0,你能证明等式你能证明等式logloga a(MNMN)logloga aM M十十logloga aN N成立吗?成立吗?思考思考4:4:将将loglog2 23232loglog2 24=log4=log2 28 8推广到一推广到一般情形有什么结论?怎样证明?般情形有什么结论?怎样证明? 思考思考5:5:若若a a0 0,且,且a1a1,M M1 1,M M2 2,M Mn n均大于均大于0 0,则,则logloga a(M(M1 1M M2 2M
11、M3 3MMn n)?)? 知识探究(二)知识探究(二): :幂的对数幂的对数思考思考1:1:loglog2 23 3与与loglog2 28181有什么关系?有什么关系?思考思考2:2:将将loglog2 281=4log81=4log2 23 3推广到一般情形推广到一般情形有什么结论?有什么结论? 思考思考3:3:如果如果a a0 0,且,且a1a1,M M0 0,你有什,你有什么方法证明等式么方法证明等式logloga aM Mn nnlognloga aM M成立成立 思考思考4:4:loglog2 2x x2 2=2log=2log2 2x x对任意实数对任意实数x x恒成立恒成立吗
12、?吗?思考思考6 6: :上述关于对数运算的三个基本性上述关于对数运算的三个基本性质如何用文字语言描述?质如何用文字语言描述?思考思考5:5:如果如果a a0 0,且,且a1a1,M M0 0,则,则 等于什么?等于什么?lognaM两数积的对数,等于各数的对数的和;两数积的对数,等于各数的对数的和;两数商的对数,等于被除数的对数减去两数商的对数,等于被除数的对数减去 除数的对数;除数的对数;幂的对数等于幂指数乘以底数的对数幂的对数等于幂指数乘以底数的对数理论迁移理论迁移例例1 1 用用logloga ax x,logloga ay y,logloga az z表示下列表示下列 各式:各式:(
13、1)(1) ; (2) . ; (2) . logaxyz23logaxyz31 log 23例例2 2 求下列各式的值:求下列各式的值: (1) log(1) log2 2(4 47 72 25 5);); (2) lg(2) lg ;(3) log(3) log3 318 -log18 -log3 32 2 ;(4) .(4) .510031 log 23例例3 3 计算:计算: 8log3136. 0log2110log3log2log255555小结作业小结作业: :性质性质的等号左端是乘积的对数,右端是的等号左端是乘积的对数,右端是对数的和,从左往右看是对数的和,从左往右看是个降级运
14、算个降级运算. .性质性质的等号左端是商的对数,右端是对的等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右数的差,从左往右是一个降级运算,从右往左是一个升级运算往左是一个升级运算. .性质性质从左往右仍然是降级运算从左往右仍然是降级运算利用对数的性质利用对数的性质可以使两正数的积、可以使两正数的积、商的对数转化为两正数的各自的对数的和、商的对数转化为两正数的各自的对数的和、差运算,大大的方便了对数式的化简和求差运算,大大的方便了对数式的化简和求值值. .作业:作业: P P6868练习:练习:1, 21, 2,3.3.P P7474习题习题2.2A2.2A组:组:3,4,5.3
15、,4,5.2.2.1 2.2.1 对数与对数运算对数与对数运算 第三课时第三课时 换底公式及对数运算的应用换底公式及对数运算的应用 问题提出问题提出.(1 1) (2 2) (3 3)loglognaaMnMlogloglog ()aaaMNM NlogloglogaaaMMNN(1 1) ; ; (2 2) ; ; (3 3) . .log1aa log 10alogaNaN1.1.对数运算有哪三条基本性质?对数运算有哪三条基本性质?2.2.对数运算有哪三个常用结论?对数运算有哪三个常用结论? 3.3.同底数的两个对数可以进行加、减同底数的两个对数可以进行加、减运算,可以进行乘、除运算吗?运
16、算,可以进行乘、除运算吗? 4.4.由由 得得 ,但这只,但这只是一种表示,如何求得是一种表示,如何求得x x的值?的值? 181.0113x1.0118log13x 知识探究(一):知识探究(一):对数的换底公式对数的换底公式 思考思考2:2:你能用你能用lg2lg2和和lg3lg3表示表示loglog2 23 3吗?吗? 思考思考1:1:假设假设 ,则,则 ,从而有,从而有 .进一步可得到什么结论?进一步可得到什么结论? 22log 5log 3x222log 5log 3log 3xx35x思考思考4:4:我们把我们把 (a a0 0,且,且a1a1;c c0 0,且,且c1c1;b b
17、0 0)叫做叫做对数换底公式对数换底公式,该公式有什么特征?,该公式有什么特征?logloglogcacbba思考思考3:3:一般地,如果一般地,如果a a0 0,且,且a1a1;c c0 0,且,且c1c1;b b0 0,那么,那么 与哪个与哪个对数相等?如何证明这个结论?对数相等?如何证明这个结论? loglogccba思考思考6:6:换底公式在对数运算中有什么意换底公式在对数运算中有什么意 义和作用?义和作用? 思考思考5:5:通过查表可得任何一个正数的常用通过查表可得任何一个正数的常用对数,利用换底公式如何求对数,利用换底公式如何求 的值?的值? 1.0118log13知识探究(二):
18、知识探究(二):换底公式的变式换底公式的变式 思考思考1: 1: 与与 有什么关系?有什么关系? logablogba思考思考2: 2: 与与 有什么关系?有什么关系? lognaNlogaN思考思考3: 3: 可变形为什么?可变形为什么? (log) (log)aaMN理论迁移理论迁移 例例1 1 计算:计算: (1) 1) ; ; (2) (2)(loglog2 2125125loglog4 42525loglog8 85)5) (loglog5 52 2loglog25254 4loglog1251258 8)32log9log278作业:作业:P68 P68 练习:练习:4.4.P74
19、 P74 习题习题2.2A2.2A组:组: 6 6,1111,12.12.2.2.1 2.2.1 对数与对数运算对数与对数运算 第四课时第四课时 对数运算习题课对数运算习题课 知识回顾知识回顾.logbaaNbN(1) log1aa (2) log 10alog(3)aNaN1.1.指数与对数的换算指数与对数的换算: :2.2.对数运算的三个常用结论对数运算的三个常用结论: :(3) loglognaaMnM(1) logloglog ()aaaMNM N(2) logloglogaaaMMNN3.3.对数运算的三条基本性质对数运算的三条基本性质: :4.4.对数换底公式对数换底公式: :lo
20、gloglogcacbba理论迁移理论迁移55(1) 2 log 10log0.25127(2) log81例例1 1 求下列各式的值求下列各式的值: :41291(3) log 8log 3log42lg5)lg2 lg50(4)(lg 27lg8 3lg 10(5)lg1.2 2 243 -2-2 1 132例例2 2 已知已知 ,求,求 的值的值. .a12log324log3312a例例3 3 设设 ,已知,已知 , , 求求 的值的值. .35abm112abm15 例例4 204 20世纪世纪3030年代,里克特制订了一种年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪
21、表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越仪记录的地震曲线的振幅就越. . 这就是我们这就是我们常说的里氏震级常说的里氏震级M M,其计算公式为,其计算公式为M MlgAlgAlgAlgA0 0. . 其中其中A A是被测地震的最大振幅,是被测地震的最大振幅,A A0 0是是“标准地震标准地震”的振幅(使用标准振幅是为了的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差)修正测震仪距实际震中的距离造成的偏差). .(1 1)假设在一次地震中,一个距离震中)假设在一次地震中,一个距离震中
22、100100千米的测震仪记录的地震最大振幅是千米的测震仪记录的地震最大振幅是2020,此,此时标准地震的振幅是时标准地震的振幅是0.0010.001,计算这次地震,计算这次地震的震级(精确到的震级(精确到0.10.1);); 4.34.3 20 20世纪世纪3030年代,里克特制订了一种表明年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越录的地震曲线的振幅就越. . 这就是我们常说这就是我们常说的里氏震级的里氏震级M M,其计算公式为,其计算公
23、式为M MlgAlgAlgAlgA0 0. . 其中其中A A是被测地震的最大振幅,是被测地震的最大振幅,A A0 0是是“标准标准地震地震”的振幅(使用标准振幅是为了修正测的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差)震仪距实际震中的距离造成的偏差). .(2 2)5 5级地震给人的震感已比较明显,计算级地震给人的震感已比较明显,计算7.67.6级地震的最大振幅是级地震的最大振幅是5 5级地震的最大振级地震的最大振幅的多少倍(精确到幅的多少倍(精确到1 1). . 398398 例例5 5 生物机体内碳生物机体内碳1414的的“半衰期半衰期”为为57305730年,湖南长沙
24、马王堆汉墓女尸年,湖南长沙马王堆汉墓女尸出土时碳出土时碳1414的残余量约占原始含量的的残余量约占原始含量的76.776.7,试推算马王堆古墓的年代,试推算马王堆古墓的年代. . 21932193,lg) 2(lg)(2bxaxxf思考题思考题: :设函数设函数已知已知 且对一切且对一切 恒成立,求恒成立,求 的最小值的最小值. ., 2) 1(f,Rxxxf2)()(xf2.2.2 2.2.2 对数函数及其性质对数函数及其性质第一课时第一课时 对数函数的概念与图象对数函数的概念与图象 问题提出问题提出 1. 1.用清水漂洗含用清水漂洗含1 1个单位质量污垢的个单位质量污垢的衣服,若每次能洗去
25、污垢的四分之三,衣服,若每次能洗去污垢的四分之三,试写出漂洗次数试写出漂洗次数y y与残留污垢与残留污垢x x的关系式的关系式. . t57301p2 2. 2. (x0)是函数吗?若是,这是什么类型的函数?14logyx知识探究(一):知识探究(一):对数函数的概念对数函数的概念 思考思考1:1:在上面的问题中,若要使残留的在上面的问题中,若要使残留的污垢为原来的污垢为原来的 ,则要漂洗几次?,则要漂洗几次? 641思考思考2:2:在关系式在关系式 中,取中,取 对应的对应的y y的值存在吗?怎样计算?的值存在吗?怎样计算? 14logyx(0)xa a思考思考3:3:函数函数 称为称为对数
26、函数对数函数,一般地,什么叫对数函数?一般地,什么叫对数函数? 14logyx思考思考4:4:为什么在对数函数中要求为什么在对数函数中要求a a0 0, 且且alal? 思考思考5:5:对数函数的定义域、值域分别是对数函数的定义域、值域分别是什么?什么?思考思考6:6:函数函数 与与 相同吗?相同吗?为什么?为什么? 23logyx32logyx思考思考1:1:研究对数函数的基本特性应先研研究对数函数的基本特性应先研究其图象究其图象. .你有什么方法作对数函数的图你有什么方法作对数函数的图象?象?知识探究(二):知识探究(二):对数函数的图象对数函数的图象 思考思考2:2:设点设点P(mP(m
27、,n)n)为对数函数为对数函数 图象上任意一点,则图象上任意一点,则 ,从而,从而有有 . .由此可知点由此可知点Q Q(n n,m m)在哪个)在哪个函数的图象上?函数的图象上?logayxloganmnma思考思考3:3:点点P(mP(m,n)n)与点与点Q(nQ(n,m)m)有怎样的有怎样的位置关系?由此说明对数函数位置关系?由此说明对数函数 的图象与指数函数的图象与指数函数 的图象有怎样的图象有怎样的位置关系?的位置关系? logayxxyaPQxyo思考思考4:4:一般地,对数函数的图象可分为一般地,对数函数的图象可分为几类?其大致形状如何?几类?其大致形状如何? yx011xy01
28、1思考思考5:5:函数函数 与与 的图象分别如何?的图象分别如何? 2|log|yx2log |yxa a1 10 0a a0,a1);0,a1);(4 4)loglog7 75 5,loglog6 67.7.理论迁移理论迁移 例例2 2 求下列函数的定义域、值域:求下列函数的定义域、值域: (1) y(1) y ; (2) y(2) yloglog2 2(x(x2 22x2x5). 5). 31 log (1)x例例3 3 溶液酸碱度的测量溶液酸碱度的测量: : 溶液酸碱度是通过溶液酸碱度是通过pHpH刻画的刻画的. pH. pH的计算公式为的计算公式为pHpHlgHlgH+ + ,其中,其
29、中HH+ + 表示溶液中氢离子的浓度,单位是摩表示溶液中氢离子的浓度,单位是摩尔升尔升. .(1 1)根据对数函数性质及上述)根据对数函数性质及上述pHpH的计的计算公式,说明溶液酸碱度与溶液中氢算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;离子的浓度之间的变化关系;(2 2)已知纯净水中氢离子的浓度为)已知纯净水中氢离子的浓度为HH+ +10107 7摩尔升,计算纯净水的摩尔升,计算纯净水的pH.pH.作业:作业: P73 练习:3 P74 习题2.2B组:1, 2,3.第三课时第三课时 指、对数函数与反函数指、对数函数与反函数 2.2.2 2.2.2 对数函数及其性质对数函数及
30、其性质问题提出问题提出 设设a a0 0,且,且a1a1为常数,为常数, . .若以若以t t为自变量可得指数函数为自变量可得指数函数y ya ax x,若以,若以s s为自变量可得对数函数为自变量可得对数函数y ylogloga ax x. . 这两这两个函数之间的关系如何进一步进行数学个函数之间的关系如何进一步进行数学解释?解释?tas知识探究(一):知识探究(一):反函数的概念反函数的概念 思考思考1:1:设某物体以设某物体以3m/s3m/s的速度作匀速直的速度作匀速直线运动,分别以位移线运动,分别以位移s s和时间和时间t t为自变量,为自变量,可以得到哪两个函数?这两个函数相同可以得到哪两个函数?这两个函数相同吗?吗? 思考思考2:2:设设 ,分别分别x x、y y为自变量可以为自变量可以得到哪两个函数?这两个函数相同吗?得到哪两个函数?这两个函数相同吗? 2xy思考思考3:3:我们把具有上述特征的两个函数我们把具有上述特征的两个函数互称为互称为反函数反函数,那么函数,那么函数y ya ax x(a a0 0,且且a1a1)的反函数是什么?函数)的反函数是什么?函数 的反函数是什么?的反函数是什么? 21yx思考思考4:4:在函数在函数y yx x2 2中,若将中,若将y y作自变量,作自变量,那么那么x x与与y y的对应关系是函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公益慈善机构数字化转型行业相关项目经营管理报告
- 马达和引擎用风扇商业机会挖掘与战略布局策略研究报告
- 2024年中东地区销售与购买合同模板
- 借助电视播放信息行业市场调研分析报告
- IT行业项目组员工薪酬激励方案
- 马用挽具市场分析及投资价值研究报告
- 2024年5G技术集成服务合同
- 蒸汽储存器细分市场深度研究报告
- 雄激素制剂项目运营指导方案
- 运输用雪橇细分市场深度研究报告
- 样品承认流程(共4页)
- 金蝶kis专业版操作手册V20
- 房地产估价公司估价质量管理制度
- 烟气焓计算复习课程
- 梯形练字格A4纸打印版
- 2014年SHE教育培训计划
- 井下安全阀简介
- 机场使用手册飞行区场地管理
- XX学院项目主体封顶仪式策划方案
- 凯泉水泵使用说明书
- 低血糖处理流程
评论
0/150
提交评论