




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、16的平方根是什么的平方根是什么?16的算术平方根是什么?的算术平方根是什么?2、0的平方根是什么?的平方根是什么?0的算术平方根是什么?的算术平方根是什么?3、7有没有平方根?有没有算术平方根?有没有平方根?有没有算术平方根?正数和正数和0都有算术平方根;负数没有算术平方根。都有算术平方根;负数没有算术平方根。知识回顾知识回顾4、 7 表示什么?表示什么? 表示表示7 7的算术平方根的算术平方根 5、 a 表示什么?表示什么?a 需要满足什么条件?需要满足什么条件?为什么?为什么? 正数有两个平方根且互为相反数; 0有一个平方根就是它0; 负数没有平方根。1 1、平方根的性质:、平方根的
2、性质:说出下列各式的意义;;04.0,10,491,0,81,164观察:观察:上面几个式子中,被开方数的特点?根指数是多少?被开方数是非负数,根被开方数是非负数,根指数都是二次指数都是二次 2、 表示什么?a表示非负数a的算术平方根根据下图所示的直角三角形,正方形和等边三角形根据下图所示的直角三角形,正方形和等边三角形的条件,完成以下填空:的条件,完成以下填空:cmacm(b-(b-3)cm23)cm2223Scm直角三角形的斜边长是直角三角形的斜边长是正方形的边长是正方形的边长是等边三角形的边长是等边三角形的边长是你认为所得的各代数式的共同特点是什么?你认为所得的各代数式的共同特点是什么?
3、42a3bs2这三个都表示这三个都表示算术平方根,算术平方根,且根号内都含且根号内都含有字母。有字母。0aaa在实数范围内,在实数范围内,a 0时,时, 没有没有意义,只有当意义,只有当 时,时, 有意义。有意义。1.1.二次根式的概念二次根式的概念像像 这样表示的算术平方根,这样表示的算术平方根,且根号内含有字母的代数式叫做二次根式,为了方便起且根号内含有字母的代数式叫做二次根式,为了方便起见,我们把一个数的算术平方根如其中见,我们把一个数的算术平方根如其中 )也)也叫做二次根式,叫做二次根式,42a3bs221, 3二次根式根号内字母的取值范围应具备什么条件?二次根式根号内字母的取值范围应
4、具备什么条件?a (a0)表示非负数表示非负数 a 的算术平方根,的算术平方根, 形如形如 a (a0)的式子叫做的式子叫做二次根式二次根式。 它必须具备如下它必须具备如下特点特点: 1、根根指指数数为为 2; 2、被开方数必须是非负数。、被开方数必须是非负数。 想想一一想想: 1010 、 - -5 5 、3 38 8 5 5 3 3 、 ( (- -2 2) )2 2 a a (a(a0 0、a a2 2+0.1+0.1 、 - -a a (a(a0 0是不是二次根式?是不是二次根式? 判断,下列各式中那些是二次根式?判断,下列各式中那些是二次根式?,10a,a,2a,04. 0,5.83
5、,04. 0,2a,a定义:式子定义:式子 叫做二次根式叫做二次根式. . )0( aa不要忽略不要忽略其中a叫做被开方式。1a如:如: 这类代数式只能称为含有二次这类代数式只能称为含有二次根式的代数式,不能称之为二次根式;根式的代数式,不能称之为二次根式;而而 这类代数式,应把这类代数式,应把 这些二次根式这些二次根式看做系数或常数项,整个代数式仍看做整式。看做系数或常数项,整个代数式仍看做整式。3222 xx3,2例例 求下列二次根式中字母求下列二次根式中字母x的取值的取值范围:范围:3x 求下列二次根式中字母x的取值范围:2)3(, 1xx解解 当当 时时 , 。03 x3x3x字母的取
6、值范围是的实数x252 xx32)3( x例、当例、当x= -4时,求二次根式时,求二次根式 的值的值x211.当当x分别取下列值时,求二次根式分别取下列值时,求二次根式 的值的值:x24(1)x=0; (2)x=1; (3)x=-12.求当二次根式的值为时求当二次根式的值为时x的值的值2x、求下列二次根式中字母、求下列二次根式中字母x的取值范围:的取值范围:xxxx3,1,4, 12、一艘轮船先向东北方向航行小时,再向西航行、一艘轮船先向东北方向航行小时,再向西航行t时,时,船的航速是每小时船的航速是每小时25千米千米(用关于(用关于t的代数式表示船离出发地的距离;的代数式表示船离出发地的距
7、离;(求当(求当t=3时,船离出发地多少千米用计算器计算,时,船离出发地多少千米用计算器计算,结果精确到结果精确到0.01千米千米例例 1:要要使使x-1 有有意意义义,字字母母 x 的的取取值值必必须须满满足足什什么么条条件件? 解:由解:由 x-10,得,得 x1。 问:问:将式子将式子 x-1 改为改为 1-x ,则字母,则字母 x 的取值必须的取值必须满足什么条件呢?满足什么条件呢? x1 解:由解:由 x x- -2 20 0 且且 2 2- -x x0 0, 得得 x x2 2 且且 x x2 2 x=2x=2。 y=y= 0 0 + + 0 0 +3=3+3=3 x x y y=
8、2=23 3=8=8 想一想:想一想: 已知:已知:y=y= x x- -2 2 + + 2 2- -x x +3+3,求,求 x xy y的值。的值。 例例 2:要要使使x-2x-3 有有意意义义,字字母母 x 的的取取值值必必须须满满足足什什么么条条件件? 解:由解:由 x x- -2 20 0,且,且 x x- -3 30, 0, 得得 x x2 2 且且 x x3 3。 想一想:想一想:一个正数的算术平方根是一个正数的算术平方根是 。 零的算术平方根是零的算术平方根是 。 负数有没有算术平方根?负数有没有算术平方根? 正数正数0没有没有想一想:想一想: 假如把题目改为: 要使假如把题目
9、改为: 要使x x- -2 2x x- -1 1 有意义,有意义,字母字母 x x 的取值必须满足什么条件?的取值必须满足什么条件? x2 x2 非负数的算术平方根仍然是非负数。非负数的算术平方根仍然是非负数。 性质性质 1: a 0 (a0) (双重非负性)(双重非负性) 引引例例:|a-1|+(b+2) 2=0 , 则则 a= b= 例例 3:已已知知 a+2 +|3b-9|+(4-c)2=0, 求求 2a-b+c 的的值值。 解:解: a+2 0、|3b-9|0、(4-c) 20, 又又 a+2 +|3b-9|+(4-c) 2=0, a+2=0 , 3b-9=0 ,4-c=0 。 a=
10、-2 , b= 3 ,c= 4。 2a-b+c=2(-2) -3+4 = -3。 做一做做一做: 要使下列各式有意义,字母的取值必要使下列各式有意义,字母的取值必 须满足什么条件?须满足什么条件? 1、 x+3 2、 2-5x 3、 1 x 4、 a2+1 5、 x-3 + 4-x 6、x-1x-2 想一想:想一想: 甲、乙两人计算当甲、乙两人计算当a = - 1.5时时 a - 2(1)a 的值。的值。得到下列两种不同的答案,哪个正确?得到下列两种不同的答案,哪个正确?甲的解答是 a - 2(1)a = a -(a+1)= -1;乙的解答是 a - 2(1)a = a +(a+1)=2a+1=2(-1.5)+1= - 2求出下列二次根式中字
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年中国自限式电伴热带数据监测研究报告
- 二零二五年度游泳池培训班亲子活动策划与执行协议
- 2025年度电子信息产业基地厂房租赁服务协议
- 二零二五年度建筑工程款代付与竣工验收管理合同
- 2025年度资质使用及航空航天合作协议
- 二零二五年度电商企业广告宣传合作协议
- 知识产权教育与高校科研的紧密结合
- 二零二五年度智能化轮车租赁与维护一体化服务合同
- 二零二五年度家庭保姆劳动合同(含心理辅导服务)
- 二零二五年度旅游产业合作入股协议
- 招标代理服务投标方案(技术标)
- 2024年云南中烟工业有限责任公司招聘笔试真题
- 2024年山东轻工职业学院高职单招语文历年参考题库含答案解析
- 2024年哈尔滨电力职业技术学院高职单招语文历年参考题库含答案解析
- 2024年金钥匙科技知识竞赛试题及答案
- 三一重工全面预算管理
- 小公司财务报销制度及报销流程
- 《环境感知技术》2024年课程标准(含课程思政设计)
- 矿山用电安全培训课件
- 2025年中考语文一轮复习:八年级上册知识点梳理
- 航空物流运输服务标准
评论
0/150
提交评论