数字图像处理课件图像增强学习教案_第1页
数字图像处理课件图像增强学习教案_第2页
数字图像处理课件图像增强学习教案_第3页
数字图像处理课件图像增强学习教案_第4页
数字图像处理课件图像增强学习教案_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1数字图像处理课件图像增强数字图像处理课件图像增强第一页,共61页。) 51 . 4 (), (), (ajifababajig第2页/共61页第二页,共61页。 在曝光不足或过度的情况下,图像灰度可能(knng)会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。采用线性变换对图像每一个像素灰度作线性拉伸,可有效地改善图像视觉效果。第3页/共61页第三页,共61页。2分段线性变换 为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。 设原图像f(x,y)在0,Mf,感兴趣目标的灰度范围在a,b,欲使其灰度范围拉伸(l

2、 shn)到c,d,则对应的分段线性变换表达式为ffgMyxfbdbyxfbMdMbyxfacayxfabcdayxfyxfacyxg),(),()/()(),(),()/()(),(0),()/(),( 通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间(q jin)进行拉伸或压缩。第4页/共61页第四页,共61页。 第5页/共61页第五页,共61页。3非线性灰度变换 当用某些非线性函数如对数函数、指数函数等,作为(zuwi)映射函数时,可实现图像灰度的非线性变换。对数变换 对数变换的一般表达式为 ) 71 . 4 (ln1), (ln), (cbjifajig 这里a,b,c

3、是为了调整曲线的位置和形状(xngzhun)而引入的参数。当希望对图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。f (i,j)g(i,j)第6页/共61页第六页,共61页。指数变换(binhun) 指数变换(binhun)的一般表达式为 这里参数a,b,c用来调整曲线的位置和形状。这种变换(binhun)能对图像的高灰度区给予较大的拉伸。) 81 . 4 (1), (), (ajifcbjigg (i,j)f (i,j)第7页/共61页第七页,共61页。4.1.3 直方图修整法 灰度直方图反映了数字图像中每一灰度级与其出现频率(pnl)间的

4、关系,它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。 直方图修整法包括直方图均衡化及直方图规定化两类。1.直方图均衡化 直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 下面先讨论连续变化图像的均衡化问题,然后推广到离散的数字图像上。 设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。即 (4.1-9) 在0,1区间内的任一个r值,都可产生一个s值,且 (4.1-10) 1,0sr)(rTs 第8页/共61页第八页,共61页。 T(r)作为变换函数,满足下列条件: 在0r1内为单调递增函数,保证灰度级从黑到白的次序不

5、变; 在0r1内,有0T(r)1,确保映射后的像素灰度在允许的范围内。 反变换关系为 (4.1-11) T-1(s)对s同样(tngyng)满足上述两个条件。 由概率论理论可知,如果已知随机变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。假定随机变量s的分布函数用Fs(s)表示,根据分布函数定义 )(1sTrrrssSdrrpdsspsF)121 . 4()()()(第9页/共61页第九页,共61页。 利用密度函数是分布函数的导数的关系,等式两边对s求导,有: (4.1-13) 可见,输出图像的概率密度函数可以通过变换函数T(r)控制原图像灰

6、度级的概率密度函数得到,因而改善原图像的灰度层次,这就是直方图修改技术的基础。 从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。因此将原图像直方图通过T(r)调整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。 因为(yn wi)归一化假定 由(4.1-13)则有 )141 . 4(1)(sPsdrrpdsr)()()()(1sTdsdpdsdrpdrrpdsdsPrrrrs第10页/共61页第十页,共61页。两边积分得 上式表明,当变换函数为r的累积直方图函数时,能达到直方图均衡化的目的。 对于离散的数字图像

7、,用频率来代替概率,则变换函数T(rk)的离散形式(xngsh)可表示为: 上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。)151 . 4()()(0rrdrrprTskjjkjjrkknnrprTs00)()(第11页/共61页第十一页,共61页。 一幅图像sk同rk之间的关系(gun x)称为该图像的累积灰度直方图。rkPr(rk)rkS(rk)1.01.01.0下面举例说明直方图均衡(jnhng)过程。第12页/共61页第十二页,共61页。rknkpr(rk)=nk/nsk计sk并sknskpk(s)r0=07900.190.191/7s0=1/77900.19r1=1/

8、710230.250.443/7s1=3/710230.25r2=2/78500.210.655/7s2=5/78500.21r3=3/76560.160.816/7 r4=4/73290.080.896/7s3=6/79850.24r5=5/72450.060.951 r6=6/71220.030.981 r7=1810.021.001s4=14480.11例例 假定假定(jidng)(jidng)有一幅总像素为有一幅总像素为n=64n=646464的图像,灰度级数为的图像,灰度级数为8 8,各灰度级分布列于表中。对其均衡化计算过程如下:,各灰度级分布列于表中。对其均衡化计算过程如下:? 若

9、在原图像一行上连续8个像素(xin s)的灰度值分别为:0、1、2、3、4、5、6、7,则均衡后,他们的灰度值为多少?第13页/共61页第十三页,共61页。原图像(t xin)的直方图均衡(jnhng)后图像的直方图第14页/共61页第十四页,共61页。直方图均衡化示例(shl) 第15页/共61页第十五页,共61页。2.2.直方图规定化直方图规定化 在某些情况下,并不一定需要具有均匀直方图的图像,有时需要具有特定的直方图的图像,以便能够增强图像中某些灰度级。直方图规定化方法就是针对上述思想提出来的。直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。在某些情况下,并

10、不一定需要具有均匀直方图的图像,有时需要具有特定的直方图的图像,以便能够增强图像中某些灰度级。直方图规定化方法就是针对上述思想提出来的。直方图规定化是使原图像灰度直方图变成规定形状的直方图而对图像作修正的增强方法。 可见,它是对直方图均衡化处理的一种有效的扩展。直方图均衡化处理是直方图规定化的一个特例。可见,它是对直方图均衡化处理的一种有效的扩展。直方图均衡化处理是直方图规定化的一个特例。 对于直方图规定化,下面对于直方图规定化,下面(xi mian)(xi mian)仍从灰度连续变化的概率密度函数出发进行推导,然后推广出灰度离散的图像直方图规定化算法。仍从灰度连续变化的概率密度函数出发进行推

11、导,然后推广出灰度离散的图像直方图规定化算法。 假设假设pr(r)pr(r)和和pz(z)pz(z)分别表示已归一化的原始图像灰度分布的概率密度函数和希望得到的图像的概率密度函数。分别表示已归一化的原始图像灰度分布的概率密度函数和希望得到的图像的概率密度函数。第16页/共61页第十六页,共61页。 首先对原始图像进行(jnxng)直方图均衡化,即求变换函数:假定已得到了所希望的图像,对它也进行(jnxng)均衡化处理,即它的逆变换是这表明可由均衡化后的灰度得到希望图像的灰度。 若对原始图像和希望图像都作了均衡化处理,则二者均衡化的ps(s)和pv(v)相同,即都为均匀分布的密度函数。由s代替v

12、 得 z=G-1(s)rrdrrprTs0)171.4()()()181 .4()()(0zzdrrpzGv)191 .4()(1vGz第17页/共61页第十七页,共61页。 这就是所求得的变换表达式。根据上述思想,可总结出直方图规定化增强处理的步骤如下:对原始图像作直方图均衡化处理;按照希望得到的图像的灰度概率密度函数pz(z),求得变换函数G(z);用步骤得到的灰度级s作逆变换z= G-1(s)。 经过以上处理得到的图像的灰度级将具有规定的概率密度函数pz(z)。 采用与直方图均衡相同的原始图像数据(6464像素且具有8级灰度),其灰度级分布列于表中。给定(i dn)的直方图的灰度分布列于

13、表中。 对应的直方图如下: 原图像(t xin)的直方图 规定化直方图 第18页/共61页第十八页,共61页。rj sknkps(sk)zkpz(zk)vkzk并nkpz(zk)r0s0=1/77900.19z0=00.000.00z000.00r1s1=3/710230.25z1=1/70.000.00z100.00r2s2=5/78500.21z2=2/70.000.00z200.00r3s3=6/7 z3=3/70.150.15z3s0=1/77900.19r4s3=6/79850.24z4=4/70.200.35z4s1=3/710230.25r5s4=1 z5=5/70.300.65

14、z5s2=5/78500.21r6s4=1 z6=6/70.200.85z6s3=6/79850.24r7s4=14480.1110.151.00z7s4=14480.11117/ 67/ 317/ 67/ 57/ 217/ 57/ 47/ 17/ 67/ 47/ 307763765275416430zrzrzrzrzrzrzrzr第19页/共61页第十九页,共61页。 原图像(t xin)的直方图 规定的直方图 规定化后图像(t xin)的直方图? 若在原图像一行上连续(linx)8个像素的灰度值分别为:0、1、2、3、4、5、6、7,则规定化后,他们的灰度值为多少? 利用直方图规定化方法进

15、行图像增强的主要困难(kn nn)在于要构成有意义的直方图。图像经直方图规定化,其增强效果要有利于人的视觉判读或便于机器识别。第20页/共61页第二十页,共61页。下面是一个直方图规定化应用(yngyng)实例。 图(C)、(c)是将图像(A)按图(b)的直方图进行规定化得到的结果(ji gu)及其直方图。通过对比可以看出图(C)的对比度同图(B)接近一致,对应的直方图形状差异也不大。这样有利于影像融合处理,保证融合影像光谱特性变化小。第21页/共61页第二十一页,共61页。1111111119111111111191模 板4.2 图像(t xin)的空间域平滑 第22页/共61页第二十二页,

16、共61页。 任何一幅原始图像,在其获取和传输等过程中,会受到各种噪声的干扰,使图像恶化,质量下降,图像模糊,特征淹没,对图像分析不利。 为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。它可以在空间域和频率域中进行。本节介绍空间域的几种平滑法。4.2.1局部(jb)平滑法 局部(jb)平滑法是一种直接在空间域上进行平滑处理的技术。假设图像是由许多灰度恒定的小块组成,相邻像素间存在很高的空间相关性,而噪声则是统计独立的。因此,可用邻域内各像素的灰度平均值代替该像素原来的灰度值,实现图像的平滑。 第23页/共61页第二十三页,共61页。 设有一幅NN的图像f(x,y),若平滑图像为g(x,y)

17、,则有 式中x,y=0,1,N-1; s为(x,y)邻域内像素坐标的集合; M表示集合s内像素的总数。 可见邻域平均法就是将当前像素邻域内各像素的灰度平均值作为(zuwi)其输出值的去噪方法。 ) 12 . 4(),(1),(,sjijifMyxg第24页/共61页第二十四页,共61页。(m-1,n-1)(m-1,n)(m-1,n+1)(m,n-1) (m,n)(m,n+1)(m+1,n-1)(m+1,n)(m+1,n+1)例如,对图像采用33的邻域(ln y)平均法,对于像素(m,n),其邻域(ln y)像素如下:则有:),(),(91jnimfnmgZiZj第25页/共61页第二十五页,共

18、61页。 其作用相当于用这样的模板同图像卷积。 设图像中的噪声是随机不相关的加性噪声,窗口内各点噪声是独立同分布的,经过上述平滑后,信号与噪声的方差比可望提高M倍。 这种算法简单,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘(binyun)和细节处。而且邻域越大,在去噪能力增强的同时模糊程度越严重。如图4.2.1(c)和(d)。 11111111191H第26页/共61页第二十六页,共61页。(a)原图像(t xin) (b) 对(a)加椒盐噪声的图像(t xin)(c)33邻域平滑 (d) 55邻域平滑 为克服简单局部平均法的弊病,目前已提出许多保边缘(binyun)、细节的局

19、部平滑算法。它们的出发点都集中在如何选择邻域的大小、形状和方向、参加平均的点数以及邻域各点的权重系数等,下面简要介绍几种算法。第27页/共61页第二十七页,共61页。4.2.2 4.2.2 超限像素平滑法超限像素平滑法 对邻域平均法稍加改进,可导出超限像素平滑法。它是将对邻域平均法稍加改进,可导出超限像素平滑法。它是将f(x,y)f(x,y)和邻域平均和邻域平均g(x,y)g(x,y)差的绝对值与选定的阈值进行比较,根据比较结果决定点(差的绝对值与选定的阈值进行比较,根据比较结果决定点(x,yx,y)的最后灰度)的最后灰度g g (x,y)(x,y)。其表达式为。其表达式为 这算法对抑制椒盐噪

20、声比较有效,对保护仅有微小这算法对抑制椒盐噪声比较有效,对保护仅有微小(wixio)(wixio)灰度差的细节及纹理也有效。可见随着邻域增大,去噪能力增强,但模糊程度也大。灰度差的细节及纹理也有效。可见随着邻域增大,去噪能力增强,但模糊程度也大。 同局部平滑法相比,超限像元平滑法去椒盐噪声效果更好。同局部平滑法相比,超限像元平滑法去椒盐噪声效果更好。第28页/共61页第二十八页,共61页。(a)原图像 (b)对(a)加椒盐噪声的图像(c)33邻域(ln y)平滑 (d) 55邻域(ln y)平滑(e)33超限像素平滑(T=64)(f)55超限像素平滑(T=48)第29页/共61页第二十九页,共

21、61页。4.2.3 4.2.3 灰度最相近的灰度最相近的K K个邻点平均法个邻点平均法 该算法的出发点是:在该算法的出发点是:在n nn n的窗口内,属于同一集合体的像素,它们的窗口内,属于同一集合体的像素,它们(t men)(t men)的灰度值将高度相关。因此,可用窗口内与中心像素的灰度最接近的的灰度值将高度相关。因此,可用窗口内与中心像素的灰度最接近的K K个邻像素的平均灰度来代替窗口中心像素的灰度值。这就是灰度最相近的个邻像素的平均灰度来代替窗口中心像素的灰度值。这就是灰度最相近的K K个邻点平均法。个邻点平均法。 较小的较小的K K值使噪声方差下降较小,但保持细节效果较好;而较大的值

22、使噪声方差下降较小,但保持细节效果较好;而较大的K K值平滑噪声较好,但会使图像边缘模糊。值平滑噪声较好,但会使图像边缘模糊。 实验证明,对于实验证明,对于3 33 3的窗口,取的窗口,取K=6K=6为宜。为宜。4.2.4 4.2.4 最大均匀性平滑最大均匀性平滑 为避免消除噪声引起边缘模糊,该算法先找出环绕图像(t xin)中每像素的最均匀区域,然后用这区域的灰度均值代替该像素原来的灰度值。第30页/共61页第三十页,共61页。4.2.5 4.2.5 有选择保边缘平滑法有选择保边缘平滑法 该方法对图像上任一像素该方法对图像上任一像素(x,y)(x,y)的的5 55 5邻域,采用邻域,采用9

23、9个掩模,其中个掩模,其中(qzhng)(qzhng)包括一个包括一个3 33 3正方形、正方形、4 4个五边形和个五边形和4 4个六边形。计算各个掩模的均值和方差,对方差进行排序,最小方差所对应的掩模区的灰度均值就是像素(个六边形。计算各个掩模的均值和方差,对方差进行排序,最小方差所对应的掩模区的灰度均值就是像素(x,y) x,y) 的输出值。的输出值。 该方法以方差作为各个区域灰度均匀性的测度。若区域含有尖锐的边缘,它的灰度方差必定很大,而不含边缘或灰度均匀的区域,它的方差就小,那么最小方差所对应的区域就是灰度最均匀区域。因此有选择保边缘平滑法既能够消除噪声,又不破坏区域边界的细节。另外,

24、五边形和六边形在(x,y)处都有锐角,这样,即使像素(x,y)位于一个复杂形状区域的锐角处,也能找到均匀的区域。从而(cng r)在平滑时既不会使尖锐边缘模糊,也不会破坏边缘形状。第31页/共61页第三十一页,共61页。例如,某像素55邻域的灰度分布如图4.2.4,经计算9个掩模区的均值和方差为 最小方差为0,对应的灰度均值3,采用(ciyng)有选择保边缘平滑,该像素的输出值为3。4.2.6 空间低通滤波法 邻域平均法可看作一个掩模作用于图像f(x,y)的低通空间滤波,掩模就是一个滤波器,它的响应为H(r,s),于是滤波输出的数字图像g(x,y)用离散卷积表示为均值443234233对应的方

25、差54 7 17 17 28 31 23 26 0364214 7324841434215343216)62 . 4(),(),(),(llskkrsrHsyrxfyxg第32页/共61页第三十二页,共61页。常用的掩模有 掩模不同,中心点或邻域的重要程度也不相同,因此,应根据问题的需要选取合适的掩模。但不管什么样的掩模,必须保证全部权系数之和为单位值,这样可保证输出图像灰度值在许可范围(fnwi)内,不会产生“溢出”现象。 111111111911H1111211111012H1212421211613H111101111814H0010021414141415H第33页/共61页第三十三页

26、,共61页。4.2.7 4.2.7 中值滤波中值滤波 中值滤波是对一个滑动窗口内的诸像素灰度值排中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。是一种非线性的图像平滑法。例:采用例:采用(ciyng)1(ciyng)13 3窗口进行中值滤波窗口进行中值滤波原图像为:原图像为:2 2 6 2 1 2 4 4 4 2 42 2 6 2 1 2 4 4 4 2 4处理后为:处理后为: 2 2 2 2 2 2 4 4 4 4 4 2 2 2 2 2 2 4 4 4 4 4 它对脉冲干扰及椒盐

27、噪声的抑制效果好,在抑制它对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。但它对点随机噪声的同时能有效保护边缘少受模糊。但它对点、线等细节较多的图像却不太合适。、线等细节较多的图像却不太合适。 对中值滤波法来说,正确选择窗口尺寸的大对中值滤波法来说,正确选择窗口尺寸的大小是很重要的环节。一般很难事先确定最佳的窗口尺小是很重要的环节。一般很难事先确定最佳的窗口尺寸,需通过从小窗口到大窗口的中值滤波试验,再从寸,需通过从小窗口到大窗口的中值滤波试验,再从中选取最佳的。中选取最佳的。 第34页/共61页第三十四页,共61页。原图像 中值滤波一维中值滤波的几个例子(N=5

28、) 离散阶跃信号、斜升信号没有受到影响。离散三角信号的顶部则变平了。对于(duy)离散的脉冲信号,当其连续出现的次数小于窗口尺寸的一半时,将被抑制掉,否则将不受影响。第35页/共61页第三十五页,共61页。 一维中值滤波的概念很容易推广到二维。一般来说,二维中值滤波器比一维滤波器更能抑制噪声。 二维中值滤波器的窗口形状可以有多种,如线状、方形、十字形、圆形、菱形等(见图)。 不同形状的窗口产生(chnshng)不同的滤波效果,使用中必须根据图像的内容和不同的要求加以选择。从以往的经验看,方形或圆形窗口适宜于外轮廓线较长的物体图像,而十字形窗口对有尖顶角状的图像效果好。 第36页/共61页第三十

29、六页,共61页。 图(a)为原图像;图(b)为加椒盐噪声的图像;图(c)和图 (d)分别为33、55模板进行中值滤波的结果。 可见中值滤波法能有效削弱椒盐噪声,且比邻域(ln y)、超限像素平均法更有效。第37页/共61页第三十七页,共61页。1111911114.3 图像(t xin)空间域锐化第38页/共61页第三十八页,共61页。 在图像的识别中常需要突出边缘和轮廓信息。图像锐化就是增强图像的边缘或轮廓。 图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。 4.3.1 梯度锐化法 图像锐化法最常用的是梯度法。 对于(duy)图像f(x,y),在(x,y)处的

30、梯度定义为 梯度是一个矢量,其大小和方向为 )13.4(),(),(),(yyxfxyxfyxffyxgrad)23 . 4()/()/()()(y)grad(x,),(),(112),(2),(22xyxfyyxfxyyyxfxyxfyxtgfftgff第39页/共61页第三十九页,共61页。 对于离散图像处理而言,常用(chn yn)到梯度的大小,因此把梯度的大小习惯称为“梯度”。并且一阶偏导数采用一阶差分近似表示,即 fx =f(x +1 ,y)-f(x,y) fy=f(x,y +1)-f(x,y) 为简化(jinhu)梯度的计算,经常使用 grad(x,y)=Max(|fx|,|fy|

31、) (4.3-4) 或 grad(x,y)=|fx|+|f y| (4.3-5) 除梯度算子以外,还可采用Roberts、Prewitt和Sobel 算子计算梯度,来增强边缘。 Roberts对应的模板如图4.3.2所示。差分计算式如下 fx =|f(x+1,y+1)-f(x,y)| fy =|f(x+1,y)-f(x,y+1)| -1 -1 11 图4.3.2 Roberts梯度算子第40页/共61页第四十页,共61页。 为在锐化边缘的同时减少噪声的影响,Prewitt从加大边缘增强算子的模板大小出发,由2x2扩大到3x3来计算差分,如图(a)所示。 (a)Prewitt 算子 (b)Sob

32、el算子 Sobel在Prewitt算子的基础上,对4-邻域采用带权的方法(fngf)计算差分,对应的模板如图(b)。 根据梯度计算式就可以计算Roberts、Prewitt和Sobel梯度。一旦梯度算出后,就可根据不同的需要生成不同的梯度增强图像。 -101 -1-1-1 -101 -1-2-1-101000-202000-101111-101121第41页/共61页第四十一页,共61页。 第一种输出形式 g(x,y)=grad(x,y) (4.3-7) 此法的缺点是增强的图像仅显示灰度变化比较徒的边缘轮廓,而灰度变化比较平缓或均匀的区域则呈黑色。 第二种输出形式 式中T是一个非负的阈值。适

33、当选取T,可使明显的边缘轮廓得到突出,又不会(b hu)破坏原来灰度变化比较平缓的背景 第三种输出形式 它将明显边缘用一固定的灰度级LG来表现。 其它),(),(),(),(yxfTyxgradyxgradyxg其他,),(),(),(yxfTyxgradLyxgG第42页/共61页第四十二页,共61页。 第四种输出(shch)形式 此方法将背景用一个固定的灰度级 LB来表现,便于研究边缘灰度的变化。 第五种输出(shch)形式 这种方法将明显边缘和背景分别用灰度级LG和LB表示,生成二值图像,便于研究边缘所在位置。 其他,),(,),(),(BLTyxgradyxgradyxg其他,),(,

34、),(BGLTyxgradLyxg第43页/共61页第四十三页,共61页。第44页/共61页第四十四页,共61页。4.3.2 Laplacian增强算子增强算子(sun z) Laplacian 算子算子(sun z)是线性二阶微分算子是线性二阶微分算子(sun z)。即。即 2f(x,y)= 2222),(),(yyxfxyxf 对离散(lsn)的数字图像而言,二阶偏导数可用二阶差分近似,可推导出Laplacian算子表达式为 2f(x,y)= f(x+1,y)+f(x-1,y)+ f(x,y+1)+f(x,y-1)-4f(x,y) Laplacian增强算子为: g(x,y)=f(x,y)

35、- 2f(x,y) =5f(x,y)- f(x+1,y)+ f(x-1,y)+f(x,y+1)+ f(x,y-1)0101-41010Laplace算子0-10-15-10-10增强算子第45页/共61页第四十五页,共61页。其特点(tdin)是:1、在灰度均匀的区域或斜坡中间2f(x,y)为0,增强图像上像元灰度不变;2、在斜坡底或低灰度侧形成“下冲”;而在斜坡顶或高灰度侧形成“上冲”。 0 -1 0 -1 1 1 H1= -1 5 1 H2= -1 9 1 0 -1 0 -1 1 1 4.3.3 4.3.3 高通滤波法高通滤波法 高通滤波法就是高通滤波法就是(jish)(jish)用高通滤

36、波算子和图像卷积来增强边缘。常用的算子有:用高通滤波算子和图像卷积来增强边缘。常用的算子有:第46页/共61页第四十六页,共61页。4.44.4图像的频率域增强图像的频率域增强 图像增强的目的主要包括:消除噪声,改善图像的视图像增强的目的主要包括:消除噪声,改善图像的视觉效果;突出边缘,有利于识别和处理。前面是关于图像觉效果;突出边缘,有利于识别和处理。前面是关于图像空间域增强的知识,下面介绍空间域增强的知识,下面介绍(jisho)(jisho)频率域增强的方法频率域增强的方法。 假定原图像为假定原图像为f(xf(x,y)y),经傅立叶变换为,经傅立叶变换为F(uF(u,v)v)。频率域增强就

37、是选择合适的滤波器频率域增强就是选择合适的滤波器H(u,v)H(u,v)对对F(u,v)F(u,v)的频谱成的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像分进行处理,然后经逆傅立叶变换得到增强的图像g(x,y)g(x,y)。 频率域增强的一般过程如下:频率域增强的一般过程如下: DFT H(u DFT H(u,v) IDFTv) IDFTf(xf(x,y) F(uy) F(u,v) F(uv) F(u,v)H(uv)H(u,v) g(xv) g(x,y)y) 滤波滤波第47页/共61页第四十七页,共61页。 图像的平滑除了在空间域中进行外,也可以在频率域中进行。由于噪声主要集中在高频部分

38、,为去除噪声改善图像质量,滤波器采用低通滤波器H(u,v)来抑制高频成分(chng fn),通过低频成分(chng fn),然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。常用的频率域低滤波器H(u,v)有四种:1理想低通滤波器 设傅立叶平面上理想低通滤波器离开原点的截止频率为D0,则理想低通滤波器的传递函数为 由于高频成分(chng fn)包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会导致边缘信息损失而使图像边模糊。 4.4.1频率频率(pnl)域平滑域平滑) 14 . 4 (),(0),(1),(00DvuDDvuDvuH第48页/共61页第四十八页,共61页。2Bu

39、tterworth低通滤波器 n阶Butterworth滤波器的传递函数为: 它的特性是连续性衰减,而不象(b xin)理想滤波器那样陡峭变化,即明显的不连续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 )24 . 4(),(20),(11nDvuDvuH第49页/共61页第四十九页,共61页。3指数低通滤波器 指数低通滤波器是图像处理中常用的另一种平滑滤波器。它的传递函数为: 采用该滤波器滤波在抑制噪声的同时,图像边缘(binyun)的模糊程度较用Butterworth滤波产生的大些,无明显的振铃效应。 )34 . 4(e v)H(u,-0Dv)D

40、(u,n第50页/共61页第五十页,共61页。 4. 梯形低通滤波器 梯形低通滤波器是理想低通滤波器和完全平滑滤波器的折中。它的传递函数为: 它的性能(xngnng)介于理想低通滤波器和指数滤波器之间,滤波的图像有一定的模糊和振铃效应。)44 . 4(Dv)D(u,0D),(DDv)D(u,1 v)H(u,110DDD-v)D(u,0101vuD第51页/共61页第五十一页,共61页。4.4.2 4.4.2 频率域锐化频率域锐化 图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。频率域锐化就是为了消除模糊,突出边缘。因此图像的边缘、细节主要位于高频部分,而图像的模糊是由

41、于高频成分比较弱产生的。频率域锐化就是为了消除模糊,突出边缘。因此(ync)(ync)采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边缘锐化的图像。常用的高通滤波器有:采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边缘锐化的图像。常用的高通滤波器有: 1 1)理想高通滤波器)理想高通滤波器 二维理想高通滤波器的传递函数为二维理想高通滤波器的传递函数为 )54 . 4(),(1),(0),(00DvuDDvuDvuH第52页/共61页第五十二页,共61页。2)巴特沃斯高通滤波器 n阶巴特沃斯高通滤波器的传递函数定义(dngy)如下 H(u,v)=1/1+(

42、 D0/D(u,v)2n 3)指数滤波器 指数高通滤波器的传递函数为)74 . 4(),(),(0nvuDDevuH第53页/共61页第五十三页,共61页。4)梯形(txng)滤波器 梯形(txng)高通滤波器的定义为)84 . 4(Dv)D(u,1D),(DDv)D(u,0 v)H(u,001DDD-v)D(u,1101vuD 四种滤波函数的选用类似于低通。理想高通有明显振铃现象,即图像(t xin)的边缘有抖动现象;Butterworth高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的,振铃现象 不明显;指数高通效果比Butterworth差些,振铃现象不明显;梯

43、形高通会产生微振铃效果,但计算简单(jindn),较常用。 一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也使噪声增强。因此不能随意地使用。 第54页/共61页第五十四页,共61页。4.5 彩色增强技术彩色增强技术 人眼的视觉特性人眼的视觉特性 : 分辨的灰度级介于十几到二十几级之间分辨的灰度级介于十几到二十几级之间 ; 彩色分辨能力可达到灰度分辨能力的百倍以上彩色分辨能力可达到灰度分辨能力的百倍以上。 彩色增强技术是利用人眼的视觉特性,将灰彩色增强技术是利用人眼的视觉特性,将灰度图像变成彩色图像或改变彩色图像已有彩色度图像变成彩色图像或改变彩色图像已有彩色的分

44、布的分布(fnb),改善图像的可分辨性。彩色增,改善图像的可分辨性。彩色增强方法可分为伪彩色增强和假彩色增强两类。强方法可分为伪彩色增强和假彩色增强两类。4.5.1 伪彩色增强伪彩色增强 伪彩色增强是把黑白图像的各个不同灰度级伪彩色增强是把黑白图像的各个不同灰度级按照线性或非线性的映射函数变换成不同的彩按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像的技术。使原图像细节色,得到一幅彩色图像的技术。使原图像细节更易辨认,目标更容易识别。更易辨认,目标更容易识别。 伪彩色增强的方法主要有密度分割法、灰度伪彩色增强的方法主要有密度分割法、灰度级一彩色变换和频率域伪彩色增强三种。级一彩色变换和频率域伪彩色增强三种。 第55页/共61页第五十五页,共61页。1.1.密度分割法密度分割法2.2. 密度分割法是把黑白图像的灰度级从密度分割法是把黑白图像的灰度级从0 0(黑)到(黑)到M0M0(白)分成(白)分成N N个区间个区间Ii(i=1Ii(i=1,2 2,N),N),给每个区间给每个区间IiIi指定一种彩色指定一种彩色CiCi,这样,便可以把一幅灰度图像变成一幅伪彩色图像。,这样,便可以把一幅灰度图像变成一幅伪彩色图像。3.3. 该方法该方法(fngf)(fngf)比较

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论