




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精品教学教案设计|Excellentteachingplan教师学科教案20-20学年度第一学期任教学科:任教年级:任教老师:xx市实验学校精品教学教案设计|Excellentteachingplan3.1数列(两课时)教学设计一、教材分析1 .在教材中的地位与作用“数列”是中学数学的重要内容之一。不仅在历年的高考中占有一定的比重,而且在实际生活中也经常要用到数列的一些知识。例如:储蓄、分期付款中的有关计算就要用到数列知识。本节的内容,一方面是前面函数知识的延伸及应用,可以使学生加深对函数概念的理解;另一方面也可以为后面学习等差数列、等比数列的通项、求和等知识打下铺垫。所以本节在教材中起到了“
2、承上启下”的作用。本节的学习中,要经常观察、分析、归纳、猜想,还要综合前面的知识解决数列中的一些问题,有助于学生数学能力的提高。2 .内容与要求本节主要介绍数列的概念、分类,以及给出数列的两种方法。关于数列的概念,先给出了一个描述性定义,尔后又在此基础上,给出了一个在函数观点下的定义,指出:”从函数的观点看,数列可以看作是一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值”。这样就可以将数列与函数联系起来,不仅可以加深对数列概念的理解,而且有助于运用函数的观点去研究数列。关于给出数列的两种方法,其中数列的通项公式,教材已明确指出它就是相应函数的解析式。点破了
3、这一点,数列与函数的内在联系揭示得就更加清楚。止匕外,正如并非每一函数均有解析表达式一样,也并非每一数列均有通项公式(有通项公式的数列只是少数),因而研究递推公式给出数列的方法可使我们研究数列的范围大大扩展。递推是数学里的一个非常重要的概念和方法,数学归纳法证明问题的基本思想实际上也是“递推”。在数列的研究中,不仅很多重要的数列是用递推公式给出的,而且它也是获得一个数列的通项公式的途径:先得出较为容易写出的数列的递推公式,然后再根据它推得通项公式。但是,这项内容也是极易膨胀的,例如研究用递推公式给出的数列的性质,从数列的递推公式推导通项公式等,这样就会加重学生负担。考虑到学生是在高一学习,我们
4、必须牢牢把握教学要求,只要能初步体会一下用递推方法给出数列的思想,能根据递推公式写出一个数列的前几项就行了。育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan3 .教材的编排及例习题功能分析(1)第一课时:引言中的故事、生活实际、生产实践中的实例-数列概念-数列记号-通项公式-函数认识-图象表示-数列分类-例题-练习例1是公式的直接运用,已知数列的通项公式,写出数列的某些项。根据数列通项公式的意义,只要将序号代替公式中的n,就可以求出相应的项。配套练习是P120练习1,2例2是公式的归纳发现,给出数列的前几项,要求写出使这几项能够满足的一个通项公式。
5、解决这类问题,关键是找出这些项与它们的序号的关系。目的是为了培养学生观察和归纳的能力。实际上,这类问题的解答常常不是唯一的,例如(1)题中an=入(n-1)(n-2)(n-3)(n-4)+2n-1都是数列的通项公式。要求学生得出一个使所给的各项都能满足的、最简捷的公式就可以了。配套练习是P120练习3,4(2)第二课时引言中的故事的数列-另一种数列给出方法-递推公式-例题-练习例3是已知数列的递推公式,逐一写出数列的前5项.目的是让学生亲自体验递推的过程.领会这一给出数列的重要方法.配套练习是P122练习1,2,34 .学生认知分析积极的因素:概念的形成对学生的思维能力要求不高,容易接受,容易
6、激发兴趣。不利的因素:从特殊到一般的观察、归纳,能力要求较高,学生接受会有一定的困难。5 .学情分析高一学生刚从初中进入高中,学习方式和思维习惯还不是很适应,缺乏全面的、深刻的思维能力6 .教学重点(1)第一课时:数列的概念,通项公式(2)第二课时:递推公式7 .教学难点育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan(1)第一课时:根据数列的前几项写出数列的一个通项公式难点的突破:激发学生的兴趣,激励学生去探索,由各项的特点,去找出各项共同的构成规律.找出这些项与相应的项数(即序号)之间的对应关系。教师可引导一些常见的切入点:观察各项的分子、各项
7、的分母、正负相问、各项与一些特殊的数(比如平方数、数的乘方)的关系,(2)第二课时:理解递推公式与通项公式的关系难点的突破:递推公式是给出数列的一种重要方法,通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n项)之间的关系.要通过实例发现:递推公式不是通项公式,它不能通过代入序号n就可以立刻求出an的值;而已知通项公式也不一定就能得到相邻两项(或n项)之间的递推关系.让学生真正理解递推公式与通项公式的关系.8 .教学目标知识目标:第一课时:(1)形成并掌握数列及其有关概念,识记数列的表示和分类,了解数列通项公式的意义。(2)数列的通项公式,能根据数列的通项公式写出数列的任意一
8、项。对比较简单的数列,使学生能根据数列的前几项观察归纳出数列的通项公式,并通过数列与函数的比较加深对数列的认识。第二课时:(1) .了解数列的递推公式,明确递推公式与通项公式的异同;(2) .会根据数列的递推公式写出数列的前几项。能力目标:培养学生观察、归纳、类比、联想等分析问题的能力,同时加深理解数学知识之间相互渗透性的思想。情感目标:通过渗透函数、方程思想,培养学生的思维能力,使学生在民主、和谐的活动中感受学习的乐趣。通过介绍数列与函数间存在的特殊到一般关系,向学生进行辩证唯物主义思想教育。3.1数列(第1课时)教学过程育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellent
9、teachingplan1、创设情景,激发兴趣,引入新课(1)电脑动画演示:国际象棋棋盘格子中放有麦粒的示意图,从而得到一组数:1,2,22,23263叙述故事:给你一张报纸,你可以用它登上月球,你相信吗?只要不断地将报纸对折42次以后,报纸的厚度就可以达到月球和地球的距离。设计意图:以实例引入概念,再配以电脑动画,叙述小故事,增强了感性认识,调动学生学习新知识的积极性。(2)投影演示,再观察以下几列数:引言问题中各个格子里的麦粒数按放置的先后排成一列数:1,2,22,23,,263。某班学生的学号由小到大排成的一列数:1,2,3,4,500从1984年到2004年,中国体育健儿参加奥运会每届
10、所得的金牌数:15,5,16,16,28,32.某次活动,在1km长的路段,从起点开始,每隔10m放置一个垃圾筒,由近及远各筒与起点的距离排成一列数:0,10,20,30,1000。放射性物质衰变,设原质量为1,则各年的剩留量依次为:1, 0.84,0.842,0.843,2、归纳抽象,形成概念(1)学生尝试叙述数列的定义:启发学生观察上述几组数据后,进行归纳总结定义:按一定次序排成的一列数,叫数列,便于培养学生的抽象概括能力举例1:1,3,5,7与7,5,3,1这两个数列有何区别?举例2:-1,1,-1,1,是不是一个数列?设计意图:使学生注意把数列中的数和集合中的元素区分开来:数列中的数是
11、有顺序的,而集合中的元素是无序的。数列中的数可以重复出现,而集合中的元素不能重复出现。进一步加深学生对数列定义的理解。(2)数列的项及项的表示方法:&育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan(3)数列的表示方法:可写成:ai,a2,a3,an或简记为:an,注意必与an的区别上述(2)(3)采用指导阅读法(书P118页第7段第8段),对a与an的区别进行集体讨论归纳。3、通项公式的探索(1)观察归纳定义由学生观察引例中数列的项与它在数列中的位置(即项的序号)问的关系:实物投影:序号12364;项1=21-12=22-12=23-1263=2
12、64-1从而可看出项与项的序号之间可用一个公式:an=2n-1表示,该公式叫数列的通项公式,然后归纳抽象出数列的通项公式的定义(略)。(2)用函数观点看待数列:这是一个难点,讲解必须清楚、透彻。数列可看作是以自然数集或它的有限子集为定义域的函数,当自变量由小到大依次取值时对应的一列函数值(这是数列的本质),其图象是一群孤立的点,画图(棋盘麦粒这个数列)设计意图:加深对函数概念的理解。(3)数列的分类:有穷与无穷,(可增补递增、递减、常数、摆动)学生口答:数列分别归于哪类数列?4、讲解例题设计例题:根据通项公式写出前几项并会判断某个数是否为该数列中的项;根据数列的前几项写出一个通项公式。例1,根
13、据下列数列an的通项公式,写出它的前5项(1)&=-n(2)an=(-1)nnn1设计意图:使学生正确掌握通项与序号的关系。变式训练:问空史是否为数列(1)中的项?2550设计意图:使学生明确方程思想是解决数列问题的重要方法。育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan例2,写出下列数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7_222221314151,2345(3)11,1223设计意图:引导学生进行解题后反思,对完善学生的认知结构是十分必要写通项公式时,就是要去发现&与n的关系,对各项进行多角度、多层次观察,找出这些
14、项与相应的项数(即序号)之间的对应关系。(注:遇到分数,可分别观察分子组的数列特征与分母组成的数列特征;若为正负相问的项,则可用-1的奇次幕或偶次幕进行符号交换,有时也可根据相邻的项,适当调整有关的表达式。)说明根据数列的前几项写出的通项公式可能不唯一,例如(1)题中a=入(n-1)(n-2)(n-3)(n-4)+2n-1都是数列的通项公式。5、练习巩固投影演示:(1)写出数列1,-1,1,-1,的一个通项公式(2)是否所有数列都有通项公式?上述(1)的设计意图:an=(-1)n+1也可写成白=1(当n为奇数时)-1(当n为偶数时)%.*.一、一.一一.一且nN,进一步说明根据数列的前几项写出
15、的通项公式可能不唯一。(2):引例就没有通项公式。通过这些练习,使学生能及时消化,及时巩固所学内容。6、归纳小结由学生试着总结本节课所学内容,老师适当补充,可以训练学生的收敛思维,有助于完善学生的思维结构。(1)数列及有关概念。(2)根据数列的通项公式求任意一项,并能判断某数是否为该数列中的项。(3)根据数列的前几项写出数列的一个通项公式。(4)数列与函数的关系育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan7、课后作业:(1)课本P110闫题3.1/1,2(2)复习看书P118-120设计意图:进一步巩固所学内容。8、板书设计9、课后反思3. 1
16、数列(第2课时)教学过程一、复习:上节学习知识点如下1 .数列的定义:按一定次序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2 .数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,第n项,.3 .数列的一般形式:a1,a2,a3,L,an,L.或简记为an,其中an是数列的第n项4 .数列的通项公式:如果数列的第n项an与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.5 .
17、数列的图像都是一群孤立的点.6 .数列分类有穷与无穷;递增、递减、常数、摆动。二、创设情景,激发兴趣,引入新课知识都来源于实践,最后还要应用于生活,用其来解决一些实际问题。1 .观察钢管堆放示意图,寻其规律,建立数学模型.模型一:自上而下:育人犹如春风化雨,授业不惜蜡炬成灰精品教学教案设计|Excellentteachingplan第1层钢管数为4;即:1-4=1+3第2层钢管数为5;即:2-5=2+3JLjBl_A_A.J第3层钢管数为6;即:3-6=3+3第4层钢管数为7;即:4-7=4+3乂第5层钢管数为8;即:5-8=5+3OCCOOCOC06第6层钢管数为9;即:6-9=6+3第7层
18、钢管数为10;即:7-10=7+3若用an表示钢管数,n表示层数,则可得出每一层的钢管数为一数列an,且an=n+3(1n7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数,这会给我们的统计与计算带来很多方便。让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1即a2=a+1;a3=a2+1;a4=a3+1,依此类推:an=an-1+1(2n7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。2 .引言中的数列还可以用如下方法给出:第一个格
19、子里的麦粒数是1,从第二个格子起,每个格子里的麦粒数都是前一个格子里的麦粒数的2倍,也就是说a=1,a2=2=2ai,a3=4=2函,a64=263=2卸。即有a1=1,an=2an-1(2n3,nCN*)四、例题讲解1例1已知数列an的第1项是1,以后的各项由公式an1,给出,写出an1这个数列的前5项.分析:题中已给出an的第1项即a1,递推公式:an1an1解:据题意可知:a11,a212,a311a1a23(158a41,a5一a335设计意图:让学生亲自体验由给定的初值项和递推公式可以逐一写出数列的项来,从而认识到递推公式也是给出数列的一种方法。例2已知数列an中,a11,a22,an3an1an2(n3),试写出数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高考政治全国卷逐题回顾与预测专题05公民的政治生活-针对高考第16题含解析
- 项目审计程序与技巧考核试题及答案
- 陕西规划课题申报书
- 项目管理考试中的高频考点与试题答案
- 精通微生物检验技师证书考试的试题及答案
- 行业分析对证券投资的重要性试题及答案
- 规划课题课题申报评审书
- 项目管理考试全流程掌握试题及答案
- 专业人士制作的证券从业资格证考试试题及答案
- 项目资源优化配置实务试题及答案
- 【MOOC】大学体育(二)-华中科技大学 中国大学慕课MOOC答案
- 机油化学品安全技术(MSDS)说明书
- 体育概论-第三版-杨文轩-陈琦-全国普通高等学校体育专业类基础课程教材-第五章-体育手段
- 大班音乐《水果百变秀》课件
- 妇幼保健院医疗保健服务转介工作制度和流程
- 国家职业技能鉴定考评员考试题库1100题【含答案】
- 监察机关执法工作规定学习测试
- 产品鉴定试验大纲
- 2022职业病防治法宣传周PPT
- (高清版)外墙外保温工程技术标准JGJ144-2019
- 常州市武进区征地拆迁房屋装修及附属设施补偿标准
评论
0/150
提交评论