二元一次方程应用习题13种经典习题_第1页
二元一次方程应用习题13种经典习题_第2页
二元一次方程应用习题13种经典习题_第3页
二元一次方程应用习题13种经典习题_第4页
二元一次方程应用习题13种经典习题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、考点一 -二元一次方程概念 与解法例1已知是二元一次方程组的解,则2mn= 例2小明和小佳同时解方程组,小明看错了m,解得,小华看错了n,解得,你能知道原方程组正确的解吗 总结分析:灵活学会“方程解”概念解题。【巩固】已知方程组和方程组的解相同,求的值。考点二-解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组)6、验:检验方程(组)的解是否符合实际题意7、答:完整写出答案(包括单位)列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足

2、:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程-解决实际问题甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米 总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。【变式】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。二、 工程问题三个基本量的关系:工作总量工作

3、时间×工作效率;工作时间工作总量÷工作效率;工作效率工作总量÷工作时间甲的工作量乙的工作量甲乙合作的工作总量,注:当工作总量未给出具体数量时,常设总工作量为“1”。一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少 总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为

4、a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司请你说明理由. 三:商品销售利润问题利润问题:利润=售价进价,利润率=(售价进价)÷进价×100%有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元 【变式】某商

5、场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:AB进价(元/件)12001000售价(元/件)13801200求该商场购进A、B两种商品各多少件;四、银行储蓄问题银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间本金×利率×时间×税率4小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为的教育储蓄,另一种是年利率为的一年定期存款,一年后可取出元,问这两种储蓄各存了多少钱(利息所得税利息金额×20%,教育储蓄没有利息所得税)【变

6、式】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息%;第二种,三年期整存整取,这种存款银行年利率为%.三年后同时取出共得利息元(不计利息税),问小敏的爸爸两种存款各存入了多少元?五、生产中的配套问题产品配套问题:加工总量成比例某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套 【变式】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,

7、或做桌腿300条。现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌能配多少张方桌?六、增长率问题增长率问题:原量×(1增长率)=增长后的量原量×(1减少率)=减少后的量 某工厂去年的利润(总产值总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元 (1)若条件不变,求今年的总产值、总支出各是多少万元?【变式2】某城市现有人口42万,估计一年后城镇人口增加%,农村人口增加%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。七、和差倍分问

8、题和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的倍、倍,恰好按时完成了这项任务求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶 【变式】 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?八:数字问题首先要正确掌握自然数、奇数偶数

9、等有关的概念、特征及其表示 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。【变式】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?【变式】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。九:浓度问题溶液×浓度=溶质现有两种酒精溶液,甲种酒精溶液的酒精

10、与水的比是37,乙种酒精溶液的酒精与水的比是41,今要得到酒精与水的比为32的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少 【变式】一种35%的新农药,如稀释到%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成%的农药800千克?十、几何问题必须掌握几何图形的性质、周长、面积等计算公式如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少 【变式】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?十一、年龄问题人与人的岁数是同时增长的今年父亲的年龄是儿子的5倍,6年后父亲的年

11、龄是儿子的3倍,求现在父亲和儿子的年龄各是多少 【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.二、优化方案问题:某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进行粗加工;方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成你认为选择哪种方案获利最多为什么?【变式】某商场计划拨款9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论