版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 专题34函数与几何综合问题(解答题)一、解答题1(2021·浙江中考真题)在平面直角坐标系中,点A的坐标为,点B在直线上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D若,求证:若,求四边形的面积(2)是否存在点B,使得以为顶点的三角形与相似?若存在,求OB的长;若不存在,请说明理由2(2021·浙江中考真题)如图,在平面直角坐标系中,经过原点,分别交轴、轴于,连结直线分别交于点,(点在左侧),交轴于点,连结(1)求的半径和直线的函数表达式(2)求点,的坐标(3)点在线段上,连结当与的一个内角相等
2、时,求所有满足条件的的长3(2021·黑龙江中考真题)如图,一次函数的图象与轴的正半轴交于点,与反比例函数的图像交于两点以为边作正方形,点落在轴的负半轴上,已知的面积与的面积之比为(1)求一次函数的表达式:(2)求点的坐标及外接圆半径的长4(2021·江苏中考真题)已知四边形是边长为1的正方形,点E是射线上的动点,以为直角边在直线的上方作等腰直角三角形,设(1)如图1,若点E在线段上运动,交于点P,交于点Q,连结,当时,求线段的长;在中,设边上的高为h,请用含m的代数式表示h,并求h的最大值;(2)设过的中点且垂直于的直线被等腰直角三角形截得的线段长为y,请直接写出y与m的
3、关系式5(2021·江苏中考真题)在平面直角坐标系中,对于A、两点,若在y轴上存在点T,使得,且,则称A、两点互相关联,把其中一个点叫做另一个点的关联点已知点、,点在一次函数的图像上(1)如图,在点、中,点M的关联点是_(填“B”、“C”或“D”);若在线段上存在点的关联点,则点的坐标是_;(2)若在线段上存在点Q的关联点,求实数m的取值范围;(3)分别以点、Q为圆心,1为半径作、若对上的任意一点G,在上总存在点,使得G、两点互相关联,请直接写出点Q的坐标6(2021·广东中考真题)如图,在平面直角坐标系xOy中,直线分别与x轴,y轴相交于A、B两点,点为直线在第二象限的点
4、(1)求A、B两点的坐标;(2)设的面积为S,求S关于x的函数解析式:并写出x的取值范围;(3)作的外接圆,延长PC交于点Q,当的面积最小时,求的半径7(2021·广西梧州市·中考真题)如图,在平面直角坐标系中,抛物线yx2+bx+c经过点A(1,0),B(0,3),顶点为C平移此抛物线,得到一条新的抛物线,且新抛物线上的点D(3,1)为原抛物线上点A的对应点,新抛物线顶点为E,它与y轴交于点G,连接CG,EG,CE(1)求原抛物线对应的函数表达式;(2)在原抛物线或新抛物线上找一点F,使以点C,E,F,G为顶点的四边形是平行四边形,并求出点F的坐标;(3)若点K是y轴上的
5、一个动点,且在点B的上方,过点K作CE的平行线,分别交两条抛物线于点M,N,且点M,N分别在y轴的两侧,当MNCE时,请直接写出点K的坐标8(2021·四川中考真题)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象相交于点,与x轴相交于点B(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当是以为底的等腰三角形时,求直线的函数表达式及点C的坐标9(2021·湖南中考真题)如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像
6、于点(1)求的值,并且用含的式子表示点的横坐标;(2)连接、,记、的面积分别为、,设,求的最大值10(2021·江苏中考真题)如图,在平面直角坐标系中四边形为矩形,点、分别在轴和轴的正半轴上,点为的中点已知实数,一次函数的图像经过点、,反比例函数的图像经过点,求的值11(2021·山东中考真题)如图,在平面直角坐标系中,矩形的两边、分别在坐标轴上,且,连接反比例函数()的图象经过线段的中点,并与、分别交于点、一次函数的图象经过、两点(1)分别求出一次函数和反比例函数的表达式;(2)点是轴上一动点,当的值最小时,点的坐标为_12(2021·广西中考真题)如图,在中,
7、于点,点是上一动点(不与点,重合),在内作矩形,点在上,点,在上,设,连接(1)当矩形是正方形时,直接写出的长;(2)设的面积为,矩形的面积为,令,求关于的函数解析式(不要求写出自变量的取值范围);(3)如图,点是(2)中得到的函数图象上的任意一点,过点的直线分别与轴正半轴,轴正半轴交于,两点,求面积的最小值,并说明理由13(2021·江苏中考真题)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用(理解)(1)如图1,垂足分别为C、D,E是的中点,连接已知,分别求线段、的长(用含a、b的代数式表示);比较大小:_
8、(填“”、“”或“”),并用含a、b的代数式表示该大小关系(应用)(2)如图2,在平面直角坐标系中,点M、N在反比例函数的图像上,横坐标分别为m、n设,记当时,_;当时,_;通过归纳猜想,可得l的最小值是_请利用图2构造恰当的图形,并说明你的猜想成立14(2021·四川中考真题)已知反比例函数的图象经过点(1)求该反比例函数的表达式;(2)如图,在反比例函数的图象上点A的右侧取点C,作CHx轴于H,过点A作y轴的垂线AG交直线于点D过点A,点C分别作x轴,y轴的垂线,交于B,垂足分别为为F、E,连结OB,BD,求证:O,B,D三点共线;若,求证:15(2021·内蒙古中考真
9、题)如图,矩形的两边的长分别为3,8,C,D在y轴上,E是的中点,反比例函数的图象经过点E,与交于点F,且(1)求反比例函数的解析式;(2)在y轴上找一点P,使得,求此时点P的坐标16(2021·湖南中考真题)如图,抛物线经过,两点,与轴交于点,连接(1)求该抛物线的函数表达式;(2)如图2,直线:经过点A,点为直线上的一个动点,且位于轴的上方,点为抛物线上的一个动点,当轴时,作,交抛物线于点(点在点的右侧),以,为邻边构造矩形,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为,在(2)的条件下,当矩形的周长取最小值时,抛物线上是否存在点,使得?若存在,请求出点的坐标;若不存在,
10、请说明理由17(2021·湖北中考真题)抛物线交轴于,两点(在的左边)(1)的顶点在轴的正半轴上,顶点在轴右侧的抛物线上如图(1),若点的坐标是,点的横坐标是,直接写出点,的坐标;如图(2),若点在抛物线上,且的面积是12,求点的坐标; (2)如图(3),是原点关于抛物线顶点的对称点,不平行轴的直线分别交线段,(不含端点)于,两点,若直线与抛物线只有一个公共点,求证的值是定值18(2021·湖南中考真题)已知二次函数(1)若,求方程的根的判别式的值;(2)如图所示,该二次函数的图像与x轴交于点、,且,与y轴的负半轴交于点C,点D在线段OC上,连接AC、BD,满足 ,求证:;
11、连接BC,过点D作于点E,点在y轴的负半轴上,连接AF,且,求的值19(2021·内蒙古中考真题)如图,在平面直角坐标系中,抛物线经过坐标原点,与x轴正半轴交于点A,点是抛物线上一动点(1)如图1,当,且时,求点M的坐标:若点在该抛物线上,连接OM,BM,C是线段BM上一动点(点C与点M,B不重合),过点C作,交x轴于点D,线段OD与MC是否相等?请说明理由;(2)如图2,该抛物线的对称轴交x轴于点K,点在对称轴上,当,且直线EM交x轴的负半轴于点F时,过点A作x轴的垂线,交直线EM于点N,G为y轴上一点,点G的坐标为,连接GF若,求证:射线FE平分20(湖南省永州市2021年中考真
12、题数学试卷)已知关于x的二次函数(实数b,c为常数)(1)若二次函数的图象经过点,对称轴为,求此二次函数的表达式;(2)若,当时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数,若在(1)的条件下,当时,总有,求实数m的最小值21(2021·四川中考真题)如图,抛物线与x轴交于A、B两点,与y轴交于C点,(1)求抛物线的解析式;(2)在第二象限内的抛物线上确定一点P,使四边形PBAC的面积最大求出点P的坐标(3)在(2)的结论下,点M为x轴上一动点,抛物线上是否存在一点Q使点P、B、M、Q为顶点的四边形是平行四边形,若存在请直接写出Q点的坐标;若不存在,请说明理由22(四
13、川省资阳市2021年中考数学试卷)抛物线与x轴交于A、B两点,与y轴交于点C,且(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线上方的一点,与相交于点E,当时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿方向平移,使点D落在点处,且,点M是平移后所得抛物线上位于左侧的一点,轴交直线于点N,连结当的值最小时,求的长23(2021·黑龙江中考真题)如图,抛物线与轴交于除原点和点,且其顶点关于轴的对称点坐标为(1)求抛物线的函数表达式;(2)抛物线的对称轴上存在定点,使得抛物线上的任意一点到定点的距离与点到直线的距离总相等证明上述结论并求出点的坐标;过点的直线与抛
14、物线交于两点证明:当直线绕点旋转时,是定值,并求出该定值;(3)点是该抛物线上的一点,在轴,轴上分别找点,使四边形周长最小,直接写出的坐标24(2021·湖北中考真题)在平面直角坐标系中,抛物线与轴交于点和点,顶点坐标记为抛物线的顶点坐标记为(1)写出点坐标;(2)求,的值(用含的代数式表示);(3)当时,探究与的大小关系;(4)经过点和点的直线与抛物线,的公共点恰好为3个不同点时,求的值25(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,(1)求,三点的坐标并直接写出直线,的函数表达式;(2)点是直线下方抛物线上的一个动点,过点作的
15、平行线,交线段于点试探究:在直线上是否存在点,使得以点,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;设抛物线的对称轴与直线交于点,与直线交于点当时,请直接写出的长26(2021·湖南中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”例如都是“雁点”(1)求函数图象上的“雁点”坐标;(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧)当时求c的取值范围;求的度数;(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为
16、“雁点”?若存在,求出点P的坐标;若不存在,请说明理由27(2021·湖南中考真题)如图,在平面直角坐标系中,平行四边形的边与y轴交于E点,F是的中点,B、C、D的坐标分别为(1)求过B、E、C三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线上;(3)设过F与平行的直线交y轴于Q,M是线段之间的动点,射线与抛物线交于另一点P,当的面积最大时,求P的坐标28(2021·湖南中考真题)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且,抛物线的对称轴与直线BC交于点M,与x轴交于点N(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶
17、点的三角形与相似?若存在,求出点P的坐标,若不存在,请说明理由(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰?若存在,求出点Q的坐标,若不存在,请说明理由29(2021·甘肃中考真题)如图,在平面直角坐标系中,抛物线与坐标轴交于两点,直线交轴于点点为直线下方抛物线上一动点,过点作轴的垂线,垂足为分别交直线于点(1)求抛物线的表达式;(2)当,连接,求的面积;(3)是轴上一
18、点,当四边形是矩形时,求点的坐标;在的条件下,第一象限有一动点,满足,求周长的最小值30(2021·湖南中考真题)如图,在平面直角坐标系中,抛物线:经过点和(1)求抛物线的对称轴(2)当时,将抛物线向左平移2个单位,再向下平移1个单位,得到抛物线求抛物线的解析式设抛物线与轴交于,两点(点在点的右侧),与轴交于点,连接点为第一象限内抛物线上一动点,过点作于点设点的横坐标为是否存在点,使得以点,为顶点的三角形与相似,若存在,求出的值;若不存在,请说明理由31(2021·江苏中考真题)如图,二次函数(是实数,且)的图像与轴交于、两点(点在点的左侧),其对称轴与轴交于点,已知点位于
19、第一象限,且在对称轴上,点在轴的正半轴上,连接并延长交轴于点,连接(1)求、三点的坐标(用数字或含的式子表示);(2)已知点在抛物线的对称轴上,当的周长的最小值等于,求的值32(2021·贵州中考真题)如图,抛物线与轴交于A、B(3,0)两点,与轴交于点C(0,3),抛物线的顶点为D(1)求抛物线的解析式;(2)点P在抛物线的对称轴上,点Q在轴上,若以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,请直接写出点P、Q的坐标;(3)已知点M是轴上的动点,过点M作的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与BCD相似,若存在,请求出点M的坐标;若不存
20、在,请说明理由33(山东省淄博市2021年中考数学试题)如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,连接(1)若,求抛物线对应的函数表达式;(2)在(1)的条件下,点位于直线上方的抛物线上,当面积最大时,求点的坐标;(3)设直线与抛物线交于两点,问是否存在点(在抛物线上)点(在抛物线的对称轴上),使得以为顶点的四边形成为矩形?若存在,求出点的坐标;若不存在,说明理由34(2021·四川中考真题)如图,在平面直角坐标系中,抛物线与x轴相交于O,A两点,顶点P的坐标为点B为抛物线上一动点,连接,过点B的直线与抛物线交于另一点C(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,请用含t的代数式表示点C的横坐标,并求出当时,点C的横坐标的取值范围35(2021·湖北中考真题)如图1,已知,中,动点P从点A出发,以的速度在线段上向点C运动,分别与射线交于E,F两点,且,当点P与点C重合时停止运动,如图2,设点P的运动时间为,与的重叠部
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届四川省南充市南充高级中学高一物理第一学期期末监测试题含解析
- 甘肃省天水市秦安县第二中学2025届物理高二上期末监测模拟试题含解析
- 2025届云南省曲靖市会泽县茚旺中学物理高三第一学期期末质量跟踪监视试题含解析
- 2025届江苏省南通市如东高级中学物理高一第一学期期末监测模拟试题含解析
- 广西桂林中学2025届物理高三上期中学业水平测试试题含解析
- 2025届吉林省东辽五中物理高一上期末预测试题含解析
- 2025届浙江省嘉兴市重点名校物理高二上期中调研模拟试题含解析
- 致动器基础知识单选题100道及答案解析
- 愉景苑商铺全年推广方案课件
- 性别差异对大学生网络消费行为的影响课件
- 工程量清单及招标控制价编制服务采购服务方案
- 导游业务复习题库
- 做情绪的主人拒绝精神内耗
- 药学大学生职业规划
- 心理放松训练
- 客户需求及层次
- 海绵城市完整
- 力敏传感器教学课件
- 强奸罪起诉状
- 2024年广东佛山市三水区淼城建设投资有限公司招聘笔试参考题库附带答案详解
- 《排球运动》PPT课件(部级优课)
评论
0/150
提交评论