版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中学学习微积分的意义中学学习微积分的意义天地通用微积分:是研究各种科学的工天地通用微积分:是研究各种科学的工具,是学生终生学习最重要的数学基础具,是学生终生学习最重要的数学基础在中学数学中,微积分是研究初等函数在中学数学中,微积分是研究初等函数和几何问题最有效的工具:和几何问题最有效的工具:平均值、单调性、极值、最值、求长度、平均值、单调性、极值、最值、求长度、面积、体积等面积、体积等树立科学的世界观,用变化的观点观察树立科学的世界观,用变化的观点观察世界世界中学学习微积分的方法中学学习微积分的方法直观微积分直观微积分通过直观说理学习微积分,而不是不说理。通过直观说理学习微积分,而不是不说理。
2、平均速度和瞬时速度,平均变化率和瞬时变平均速度和瞬时速度,平均变化率和瞬时变化率。化率。割线与切线斜率的计算割线与切线斜率的计算通过数值的近似计算理解微积分思想通过数值的近似计算理解微积分思想计算器和计算软件的使用计算器和计算软件的使用微积分编写的指导思想微积分编写的指导思想打破传统的教学顺序,越过极限理论和连续函打破传统的教学顺序,越过极限理论和连续函数,直取导数,然后快速攻进微积分的核心数,直取导数,然后快速攻进微积分的核心微积分基本定理微积分基本定理. 本教材从学生所喜爱的登山运动出发,创设学本教材从学生所喜爱的登山运动出发,创设学习导数的情景,以测量山顶高度为实际背景,习导数的情景,以
3、测量山顶高度为实际背景,导出微积分学基本定理导出微积分学基本定理.这种做法的理论依据仅这种做法的理论依据仅仅是中学生所熟知的直角三角形的解法仅是中学生所熟知的直角三角形的解法xxfyxkykxy)( tan0勾股定理 y x 直角三形中的边角关系直角三形中的边角关系教学要求教学要求理解微积分学大意理解微积分学大意1. 以运动的平均速度、曲线割线的斜率为背景,以运动的平均速度、曲线割线的斜率为背景,认识函数的平均变化率;以运动的瞬时速度和认识函数的平均变化率;以运动的瞬时速度和曲线切线的斜率为背景,认识函数的瞬时变化曲线切线的斜率为背景,认识函数的瞬时变化率,从而引出导数的概念率,从而引出导数的
4、概念.由此过程,让学生体会导数与现实生活多么密由此过程,让学生体会导数与现实生活多么密切,理解导数的真正含意切,理解导数的真正含意.2. 学会用导数定义,求出部分幂函数的导学会用导数定义,求出部分幂函数的导数,并记住基本初等函数的求导公式;数,并记住基本初等函数的求导公式;并会用四则运算公式和复合函数的求导并会用四则运算公式和复合函数的求导法则,求一些比较复杂的初等函数的导法则,求一些比较复杂的初等函数的导数,在求导过程中,进一步领会导数概数,在求导过程中,进一步领会导数概念的实质念的实质.3. 体会导数的重要价值:体会导数的重要价值:(1导数对人们原先难以认识的函数性质导数对人们原先难以认识
5、的函数性质和曲线的切线给出了通用的方法,使这和曲线的切线给出了通用的方法,使这些困难问题迎刃而解;同时导数可以帮些困难问题迎刃而解;同时导数可以帮助我们解决更多的数学问题;助我们解决更多的数学问题;(2导数可以解决某些现实生活中的优化导数可以解决某些现实生活中的优化问题,增强我们解决实际问题的能力问题,增强我们解决实际问题的能力.4. 从寻求曲边梯形面积和变力作功出发,引出定从寻求曲边梯形面积和变力作功出发,引出定积分概念,由此体会定积分的真正内涵;学会积分概念,由此体会定积分的真正内涵;学会对最简单的函数求定积分例如,对最简单的函数求定积分例如,y=c,x,x2, 1/x);并理解如下运算:
6、);并理解如下运算: bababadxxgmdxxfkdxxmgxkf)()()()(5通过计算山顶的高度和变力所做的功,通过计算山顶的高度和变力所做的功,理解微积分基本定理,并通过该定理,理解微积分基本定理,并通过该定理,认识到求导数和求积分互为逆运算,并认识到求导数和求积分互为逆运算,并会用导数公式来求定积分会用导数公式来求定积分.6 6在本章教学中,要注意让学生体会微积在本章教学中,要注意让学生体会微积分学在认识论上的价值,体会任何高深分学在认识论上的价值,体会任何高深的理论都源于简单的、基本的事实;任的理论都源于简单的、基本的事实;任何复杂的事物可以化解为一个一个的简何复杂的事物可以化
7、解为一个一个的简单问题;体会用微观认识宏观的辩证方单问题;体会用微观认识宏观的辩证方法法. .要让学生了解微积分学在数学发展中要让学生了解微积分学在数学发展中重要作用和在现实生活中的意义重要作用和在现实生活中的意义. .二、教学要点二、教学要点学习微积分的一学习微积分的一些关键步骤些关键步骤1. 对直角三角形对直角三角形ABC, tan=b/a, 斜边斜边c的斜率的斜率 是是 k=tan=b/a. 某人从沿某人从沿C从从A走到走到B,高度在不,高度在不断变化,变化的快慢可用数字断变化,变化的快慢可用数字k=b/a来描述来描述.abABC设有线性函数设有线性函数 y=ax+b,其图像是直线,其图
8、像是直线l,从,从A沿沿l到到B,函数,函数y=ax+b的值在不断变化,其变化快的值在不断变化,其变化快慢仿直角三角形可用数慢仿直角三角形可用数 某人沿弯曲山路从某人沿弯曲山路从A走到走到B,高度在不断变化,高度在不断变化,其变化快慢如何用数量描述呢?当曲线其变化快慢如何用数量描述呢?当曲线AB非非常短时,可用割线常短时,可用割线AB近似地代表,即可用近似地代表,即可用(f(x1)-f(x0)/(x-x0) 近似描述此段山路高度的变化快慢近似描述此段山路高度的变化快慢.af(x1)-f(x0)x-x0函数的平均和瞬时变化率函数的平均和瞬时变化率函数函数f(x) 区间区间x0, x1的平均变化率
9、是的平均变化率是教材中以运动员跳水为例进行了计算瞬教材中以运动员跳水为例进行了计算瞬时变化率时变化率f(x1)-f(x0)x-x0f(x1)-f(x0)x-x0l曲线切线的斜率曲线切线的斜率y /x当当x0时,时,B Ay /x k就是切线就是切线l的斜率的斜率ABlxy简单初等函数的导数简单初等函数的导数c=0, x=1, (x2)=2x, (3/2 x) =3/2 x1/2, (sin x)=cos x, (cos x)=-sinx, (ex) = ex (ln x)=1/x.两函数之和、差、积、商求导两函数之和、差、积、商求导掌握基本初等函数的求导公式是非常掌握基本初等函数的求导公式是非
10、常必要的,同时要记住两函数之和、之积、必要的,同时要记住两函数之和、之积、之商的求导公式之商的求导公式.运用这两方面的结果,可运用这两方面的结果,可以求出许多较为复杂函数的导数以求出许多较为复杂函数的导数.两点补充两点补充(1要理解复合函数的求导公式要理解复合函数的求导公式 y=f(u), u=g(x) fx (g(x)= fu gx (x). y=k1u, u=k2x y=k1k2x 2.直观理解sin x和cos x的 导数xOABCOBC OAB扇形扇形OAB1/2sin xcos x1/2sin x1/2xsin xcos xsin xxxxxOABCDcossin)sin(xxxxx
11、BCcoscos E对数函数对数函数lnx的导数的导数xtxttxtxxxxxxxxxxxxxytx1)1ln(1)1ln(111lnln1ln)ln(1导数应用导数应用费马定理作奠基费马定理作奠基如果函数如果函数f(x) 在在x=x0 附近是可导的,而附近是可导的,而且均有且均有f(x)f(x0) (或(或f(x)f(x0)),则必有),则必有f(x0)=0.f(x0)=0是是x0为极值点的必要条件,于为极值点的必要条件,于是极值点必在是极值点必在f(x)=0的解之中的解之中.人们一般称人们一般称使使f(x)=0的点为驻点,极值点必在驻点之的点为驻点,极值点必在驻点之列列.直观说明用导数判定
12、函数的增减性和极直观说明用导数判定函数的增减性和极值的判定值的判定如果在如果在x= x0附近,有附近,有f(x0)0) (或或f(x0) 0),函数,函数f(x) 在在x0 附近是增加的附近是增加的或减少的);或减少的);若若y=f(x)的图像在的图像在a, b上是一条连续上是一条连续不断的曲线,不断的曲线,f(x) 在在a, b必有最大值与必有最大值与最小值最小值.解极值问题解极值问题例例1 求求f(x)=(x-1)2x2-(3a+4)x+9a-4在区间在区间 0, 3的最大值与最小值,其中常数的最大值与最小值,其中常数a满足满足0a2.例例2 在直径为在直径为1 m的圆桌正上方安装一吊灯,
13、的圆桌正上方安装一吊灯,桌面照度桌面照度y=ksin(/r),其中其中r是灯与被照点的是灯与被照点的距离,距离,是光线与桌面的夹角是光线与桌面的夹角.为使桌边最亮,为使桌边最亮,吊灯应离桌面多高吊灯应离桌面多高.例例3 设设 a、b、c为正数,那么为正数,那么33abccba.2 . 0)()(3)( 0232cbxxcbxcbXxf解得解f(x)无最大值无最大值,有最小值有最小值,最小值为最小值为f(x0)4定积分源于面积问题定积分源于面积问题如果学生问,矩形面积为什么等于长乘宽?如果学生问,矩形面积为什么等于长乘宽?其实这问题连大学生也未必能回答其实这问题连大学生也未必能回答.至于曲线形面
14、至于曲线形面积是什么,更是一个艰难的问题积是什么,更是一个艰难的问题.如今,我们姑且如今,我们姑且承认矩形面积公式,在直观的基础上,认识曲边承认矩形面积公式,在直观的基础上,认识曲边形面积,最简单的曲边形是互相垂直的直线段,形面积,最简单的曲边形是互相垂直的直线段,另一边是曲线段另一边是曲线段.例如由例如由y=x2,y=0, y=1所围的曲边三角形所围的曲边三角形.它的面积是一个客观存在,它的面积是一个客观存在,记为记为S,S是常数是常数.将底边将底边n等分,曲线之下各大小等分,曲线之下各大小矩形面积之和矩形面积之和,当当n趋向于无穷时趋向于无穷时,极限应存在极限应存在.通过求曲边梯形的面积理解定积分和通过求曲边梯形的面积理解定积分和微积分基本定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年销售经理区域市场拓展聘用合同模板2篇
- 2025年项目工程中介协议书模板(含设计、施工、验收)3篇
- 2025年私人房产买卖合同文本与合同解除条件3篇
- 民政局2025版离婚协议书婚姻纠纷调解服务协议2篇
- 二零二五版美容院美容院连锁加盟管理合同4篇
- 墙面装饰板施工方案
- 穷人续写200字6篇
- 2024年中级经济师考试题库(典型题)
- 2025年消防系统智能化改造与安全评估合同协议3篇
- 2024年园区绿化管理制度
- 二零二五年度无人驾驶车辆测试合同免责协议书
- 北京市海淀区2024-2025学年高一上学期期末考试历史试题(含答案)
- 常用口服药品的正确使用方法
- 2025年湖北华中科技大学招聘实验技术人员52名历年高频重点提升(共500题)附带答案详解
- 2024年钻探工程劳务协作协议样式版B版
- 《心肺复苏机救治院内心搏骤停患者护理专家共识》解读
- 计算机二级WPS考试试题
- 智联招聘行测题库及答案
- 前程无忧测评题库及答案
- 2023中华护理学会团体标准-注射相关感染预防与控制
- 超洁净管道(CL-PVC)施工技术
评论
0/150
提交评论