版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、机机 械械 原原 理理 郑州轻工业学院机械设计系郑州轻工业学院机械设计系2006年年3月月第一、二章习题课第一、二章习题课例例1:试计算下图所示凸轮与连杆组合机构的自由度。(:试计算下图所示凸轮与连杆组合机构的自由度。( 若若 有有 复复 合合 铰铰 链、链、 局局 部部 自自 由由 度度 或或 虚虚 约约 束,束, 必必 须须 明明 确确 指指 出。)出。) 23567AEDCBHGFJI如果构件如果构件6处换成下图呢?处换成下图呢?365看构件看构件6是否因入了虚约束?是否因入了虚约束?构件构件3、6和构件和构件5、6均组成移动副,均要限制构件均组成移动副,均要限制构件6在图纸平在图纸平面
2、内转动,这两者是重复的,因此其中一个是虚约束。面内转动,这两者是重复的,因此其中一个是虚约束。F=3*4-2*5-2+1=123567解解:求自由度:求自由度12625323HLppnF例例2 图示机构(图示机构(1)计算自由度;()计算自由度;(2)分别以构件)分别以构件1和和7为原动件,为原动件,拆分杆组,并确定判断机构级别;(拆分杆组,并确定判断机构级别;(3)求构件)求构件2、8和和2、5的瞬的瞬心心P28、P25。234576ABCDEFGIH解解(1)求自由度)求自由度101027323HLppnF(2)结构分析)结构分析 以构件以构件1为原动件时:为原动件时: 分析传动关系,从离
3、原动件最远(从传动关系上来说)的构件分析传动关系,从离原动件最远(从传动关系上来说)的构件7开始拆分开始拆分7654IHGFED123BCA机构为机构为级机构。级机构。234576ABCDEFGIH当构件当构件7为原动件时候:为原动件时候:分析传动关系,从离原动件最远(从传动关系上来说)的构分析传动关系,从离原动件最远(从传动关系上来说)的构件件1开始拆分:开始拆分:234576ABCDEFGIH765IHGF4231EDBCA当以构件当以构件7为原动件时,机构为为原动件时,机构为级机构。级机构。(3)求构件)求构件2、8和和2、5的瞬心的瞬心P28、P25。P58、P28、P25共线共线P2
4、4、P45、P25共线共线P12、P18、P28共线共线P23、P38、P28共线共线P28P25234576ABCDEFGIHP38P24P23P28P25P58P45P12P1812876543例例3: 已知已知LBC=100,LCD=70,LAD=80,AD为机架,求:为机架,求:1)若为曲柄摇杆机构,)若为曲柄摇杆机构,AB为曲柄,求为曲柄,求LAB的值。的值。2)LAB取最大值时,求取最大值时,求min和和max3) 求极位夹角求极位夹角和和K。4)在什么情况下该机构存在死点,指出死点存在的位置。)在什么情况下该机构存在死点,指出死点存在的位置。分析:本题第一小题是考查本题第一小题是
5、考查曲柄存在的条件曲柄存在的条件这个概念,来判断这个概念,来判断LAB的范围。的范围。最小传动角最小传动角 存在于曲柄与机架共线两位置之一。存在于曲柄与机架共线两位置之一。求极位夹角求极位夹角以及以及K关键是要弄清定义,做出相应的图形即可量取。关键是要弄清定义,做出相应的图形即可量取。求死点关键是要弄清定义,四杆机构中是否存在死点位置,决定于从求死点关键是要弄清定义,四杆机构中是否存在死点位置,决定于从动件是否与连杆共线。做出相应的图形即可动件是否与连杆共线。做出相应的图形即可min解:解:1)AD为机架,又要求是曲柄摇杆机构,所以要求为机架,又要求是曲柄摇杆机构,所以要求并且并且 LAB+L
6、BC LCD+LAD (曲柄存在条件)(曲柄存在条件)所以所以 LAB 70 +80-100=50mm2)当当LAB=50mm时,做图得:时,做图得: min=0和和max=82LABLAD,AD1B2B1C2CminmaxBC注:注:若若max 90,则则maxmax 98max82180max9090180max当时,3)由图量得)由图量得=60,计算,计算:K=(180+ )/ (180- )=24) 若若CD为主动件,在连杆为主动件,在连杆BC与从动件曲柄与从动件曲柄AB共线时,存在死点。共线时,存在死点。AD1B2B1C2CBC例例4 图示插床用转动导杆机构中,已知图示插床用转动导杆
7、机构中,已知LAB=50mm,LAD=40mm,K=2.27,求曲柄长度,求曲柄长度LBC及插刀及插刀P的行程的行程s。分析:要点在于掌握极位夹角的定义。要点在于掌握极位夹角的定义。DCBPA当当D至最左及最右位置时,至最左及最右位置时,P位于最左及最右位置,位于最左及最右位置,所以所以 s=2*LAD=80mm。当当P处于两个极限位置时,处于两个极限位置时,C处于图示红、蓝位置,处于图示红、蓝位置,故故 LBC=LAB/COS( /2)=61mm小结:小结:曲柄和导杆都作整周转动,曲柄和导杆都作整周转动,需要明确的是需要明确的是极位夹角是从动件极位夹角是从动件处于极限位置时,对应主动件两位置
8、所夹锐角夹角处于极限位置时,对应主动件两位置所夹锐角夹角。解:解:=180*(k-1)/(k+1)=69.91DCBP1AC1C2D2D122P2mmLsAD802P1例例5:已知图示机构的尺寸及原动件:已知图示机构的尺寸及原动件1的角速度的角速度 。求:(求:(1)图示机构共有多少个瞬心?其中几个是绝对瞬心?)图示机构共有多少个瞬心?其中几个是绝对瞬心?Mv(2)标出所有瞬心的位置;)标出所有瞬心的位置;(3)用瞬心法求)用瞬心法求M点的速度点的速度1234MP12位于位于n1n1上且与上且与P14、P24共线共线P23位于位于n2n2上且与上且与P12、P13共线共线P34 导路导路 处处
9、P13与与P14、P34共线共线P23与与P24、P34共线共线分析:分析:因此,求解顺序为因此,求解顺序为P12 P23 P13,如图示如图示解:(解:(1)瞬心数目)瞬心数目 62) 14(42) 1(nnN其中有其中有3个绝对瞬心。个绝对瞬心。 1234MP34P14P24P23Vp23n1n1P12P131P34 P34n2n2P12P14P231234P34解:(解:(1)瞬心数目)瞬心数目 62) 14(42) 1(nnN其中有其中有3个绝对瞬心。个绝对瞬心。 (2)瞬心位置如图所示)瞬心位置如图所示 :(3)24121412121PPPP方向:方向: 与与 同向,顺时针方向。同向
10、,顺时针方向。 213224322PPpMlvv方向如图所示。方向如图所示。 1234MP34P14P24P23Vp23nnP12P131P34 P342四、图示六杆机构中,原动件四、图示六杆机构中,原动件2的角速度为的角速度为 ,试求,试求(本小题本小题10分分):1、指出机构中共有多少个瞬心,其中几个绝对瞬心,几个相对瞬心(、指出机构中共有多少个瞬心,其中几个绝对瞬心,几个相对瞬心(6分);分);2、求滑块、求滑块6的速度大小和方向(的速度大小和方向(4分)。分)。例6 如图凸轮-连杆机构,设已知凸轮1的角速度,试用瞬心法确定在图示位置时构件4角速度w4的大小和方向。n12345nM1分析
11、:图中,瞬心图中,瞬心P15,P12,P23,P35,P34的的位置已经知道,因构件位置已经知道,因构件1、4组成的高组成的高副副M非纯滚动,故瞬心非纯滚动,故瞬心P14不在不在M点,点,而是过而是过M点的公法线上。作出瞬心多点的公法线上。作出瞬心多边形,已知瞬心用实线表示,由图可边形,已知瞬心用实线表示,由图可以看出以看出P12,P23的连线及的连线及P15,P35的连的连线的交点就是瞬心线的交点就是瞬心P13的位置。连接的位置。连接P13与与P34的连线与公法线的连线与公法线nn的交点就是瞬的交点就是瞬心心P14的位置;再分别连接瞬心的位置;再分别连接瞬心P15,P14的位置及的位置及P3
12、4,P35,两者的交点为,两者的交点为P45。就可以求出。就可以求出 。1234512p23p34p45p15p13p14p35pn12345nMP15P12P23P35P34P14P13P4514P13P14P45求解顺序为求解顺序为1234512p23p34p45p15p13p14p35pP13、P23、P12共线共线P13、P35、P15共线共线P13P13、P34、P14共线共线P14位于公法线位于公法线nn上上P14n12345nMP15P12P23P35P34P14P13P4511234512p23p34p45p15p13p14p35pn12345nMP15P12P23P35P34
13、P14P13P451P14、P15、P45共线共线P34、P35、P45共线共线P451234512p23p34p45p15p13p14p35p由于瞬心由于瞬心P14是构件是构件1、4的等速重合点,而的等速重合点,而P45是构件的绝对瞬心,是构件的绝对瞬心,因此因此4514151414/PPPP因为因为P14是是P14P15的内分点,因此的内分点,因此w4与与w1反向。反向。小结:小结:瞬心法适合求瞬心法适合求3杆(杆(4杆)机构的速度问题。要学会用瞬杆)机构的速度问题。要学会用瞬心多边形确定瞬心的求法。两构件的角速度之比等于其绝对瞬心多边形确定瞬心的求法。两构件的角速度之比等于其绝对瞬心到其
14、相对瞬心距离的反比,如果两构件的相对瞬心内分该线心到其相对瞬心距离的反比,如果两构件的相对瞬心内分该线(三心连线),则两构件转向相反,反之转向相同。(三心连线),则两构件转向相反,反之转向相同。例例7: 在图示四杆机构中,在图示四杆机构中,LAB=60mm, LCD=90mm,LCD=LBC=120mm, =10rad/s,用瞬心法求:,用瞬心法求:1)当)当=165时,时,C点的速度点的速度VC2)当)当=165时,构件时,构件3的的BC线上(或其延长线上)速度最小的一线上(或其延长线上)速度最小的一点点E的速度大小。的速度大小。3)当)当VC=0时,时, 角的大小(有两个解)角的大小(有两
15、个解)ADBC =16523422解:选比例尺,作机构运动简图。解:选比例尺,作机构运动简图。1)确定瞬心)确定瞬心P13的位置,求的位置,求VC。smCPVsradBPLLVlClABBPB/4 . 0/56. 2)/(/3131323132)BC线上速度最小之线上速度最小之点必与点必与P13点的距离最近,点的距离最近,因此从因此从P13引引BC线的垂线的垂线交于点线交于点E,由图可知:,由图可知:smEPVlE/357. 0313ADBCw2=165123P13EAD21B2B1C2C1p13p133)只有当绝对瞬心只有当绝对瞬心P13与与C重合时,重合时, VC=0定出定出VC=0的两个
16、位置,的两个位置,如图,量得如图,量得=26.4, =226.6小结:瞬心的位置不是固小结:瞬心的位置不是固定的,随着机构位置的变定的,随着机构位置的变化而变化。化而变化。ADBCw2=165123P13E例例8 :设计图示六杆机构。已知:设计图示六杆机构。已知AB为曲柄,且为原动件,摇杆为曲柄,且为原动件,摇杆DC的行程速比系数的行程速比系数K=1,滑块行程,滑块行程 mmxmmemmFF400,100,30021摇杆两极限位置为摇杆两极限位置为DE1和和DE2,1=45, 2=90,lEC=lCD,且,且A、D在平行于滑道的一条水平线上。试求出各杆尺寸。在平行于滑道的一条水平线上。试求出各
17、杆尺寸。E1xF2F1eABE2DC112分析:分析:1)该六杆机构可以分解为两个基本四杆机构)该六杆机构可以分解为两个基本四杆机构ABCD及及DEF,前者为曲柄摇杆机构,后者是摇杆滑块机构。前者为曲柄摇杆机构,后者是摇杆滑块机构。2)对摇杆滑块机构,已知摇杆及滑块(相当于两连架杆)的二组相)对摇杆滑块机构,已知摇杆及滑块(相当于两连架杆)的二组相对位置,可通过对位置,可通过刚化反转法刚化反转法来设计杆长。来设计杆长。3)对曲柄摇杆机构,因为)对曲柄摇杆机构,因为k=1,所以,所以=0,曲柄与连杆两次共线都在,曲柄与连杆两次共线都在同一条直线上,由此可以确定铰链同一条直线上,由此可以确定铰链A
18、的位置。的位置。4)题图只是示意图,不是运动简图,不能在上面直接量取尺寸,必)题图只是示意图,不是运动简图,不能在上面直接量取尺寸,必须严格按比例画出六杆机构运动简图。须严格按比例画出六杆机构运动简图。E1xF2F1eABE2DC112E1xF2F1eAB1E2DC112F2IIIB2C22 - 1解:取ul=0.001m/mm作图1)作两条平行线,间隔为e,在下面的线上任取一点D,作垂线DII;作DI线,使IDII=45 ;在上面一条平行线上取F1、F2点,使mmFF30021且F1至DII的距离为x=400mm2)连接DF2,绕D点逆时针转45 ,得DF2,连F1、F2点,作F1F2的中垂线交DI于E1点,连E1F1。3)以D为圆心、DE1为半径作弧交DII于E2点,作DE1、DE2的中点连线C1C2,交D点所在平行线于A点,以A为圆心、|C1C2|/2为半径作圆交C1C2于B1、B2点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产经纪操作实务-《房地产经纪操作实务》模拟试卷1
- 年度财务状况及展望模板
- 《论语新解》读书报告
- 人教版四年级数学上册寒假作业(十六)(含答案)
- 四川省自贡市富顺县西区九年制学校(富顺县安和实验学校)2024-2025学年上学期九年级期中考试物理试卷(含答案)
- 二零二五年度立体广告牌匾制作与安装协议3篇
- 二零二五年建筑工程项目管理实训教材编写与出版合同3篇
- 二零二五年度高速卷帘门安装与性能检测合同2篇
- 二零二五年度隗凝国际贸易合同3篇
- 2024年ESG投资发展创新白皮书
- 【市质检】泉州市2025届高中毕业班质量监测(二) 语文试卷(含官方答案)
- 《小学教育中家校合作存在的问题及完善对策研究》7200字(论文)
- 申请行政复议的申请书范文模板
- 药品省区经理管理培训
- DB32T 1589-2013 苏式日光温室(钢骨架)通 用技术要求
- 影视动画设计与制作合同
- 一氧化碳安全培训
- 2023学年广东省深圳实验学校初中部九年级(下)开学语文试卷
- 专项8 非连续性文本阅读- 2022-2023学年五年级语文下册期末专项练习
- 新班主任教师岗前培训
- 安徽省阜阳市2022-2023学年高三上学期期末考试 数学试题 附答案
评论
0/150
提交评论