版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新课标人教A版选修4-4 第一讲 坐标系 导学案4.1.1第一课平面直角坐标系本课提要:本节课的重点是体会坐标法的作用,掌握坐标法的解题步骤,会运用坐标法解决实际问题与几何问题.课前小测一、 温故而知新 1到两个定点A(-1,0)与B(0,1)的距离相等的点的轨迹是什么?2在ABC中,已知A(5,0),B(-5,0),且,求顶点C的轨迹方程.典型问题二、 重点、难点都在这里 【问题1】:某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚4s.已知各观测点到中心的距离都是1020m.试确定巨响发生的位置.(假定声音传播的
2、速度为340m/s,各观测点均在同一平面上.)(详解见课本)练一练:3有三个信号检测中心A、B、C,A位于B的正东,相距6千米,C在B的北偏西300,相距4千米.在A测得一信号,4秒后B、C同时测得同一信号.试求信号源P相对于信号A的位置(假设信号传播速度为1千米/秒).【问题2】:已知ABC的三边满足,BE,CF分别为边AC,AB上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系.技能训练三、懂了,不等于会了4两个定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹.5求直线与曲线的交点坐标.6求证:三角形的三条高线交于一点.7已知A(-2,0),B(2,0),则以AB
3、为斜边的直角三角形的顶点C的轨迹方程是 .8已知A(-3,0),B(3,0),直线AM、BM相交于点M,且它们的斜率之积为,则点M的轨迹方程是 .9已知B村位于A村的正西方向1公里处,原计划经过B村沿着北偏东600的方向埋设一条地下管线m.但在A村的西北方向400米处,发现一古代文物遗址W.根据初步勘察的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?答案:【问题1】解:巨响在信息中心的西偏北450方向,距离处,【问题2】解:BE与CF互相垂直,解答见课本.1轨迹是线段AB的垂直平分线,轨迹方程是;2轨迹是双曲线的左支,轨迹方程是;4点M的轨迹是以这两
4、个定点的中点为圆心,2为半径的圆;5;6如图,以AB所在直线为轴,边AB上的高CD所在直线为轴建立直角坐标系.设,则.,直线AD、BE的方程分别为,联立解得.所以AD、BE的交点H在轴上.因此,三角形的三条高线交于一点;7;8;9如图,以A为原点,正东方向和正北方向分别为轴和轴的正方向建立直角坐标系,则A(0,0),B(-1000,0),.由于直线m的方程是,于是点W到直线m的距离为,所以埋设地下管线m的计划可以不修改;平面直角坐标系中的伸缩变换【基础知识导学】1、 坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系。2、 “坐标法”解析几何学习的始终,同学们在不断地体会“数形结合”的思想
5、方法并自始至终强化这一思想方法。3、 坐标伸缩变换与前面学的坐标平移变换都是将平面图形进行伸缩平移的变换,本质是一样的。【典型例题】 Y在同一直角坐标系中,求满足下列图形变换的伸缩变换。(1) 将直线变成直线, (2) 曲线变成曲线分析:设变换为可将其代入第二个方程,得,与比较,将其变成比较系数得【解】(1),直线图象上所有点的横坐标不变,纵机坐标扩大到原来的4倍可得到直线。【解题能力测试】1、已知(的图象可以看作把的图象在其所在的坐标系中的横坐标压缩到原来的倍(纵坐标不变)而得到的,则为( )A B .2 C.3 D.2.在同一直角坐标系中,经过伸缩变换后,曲线C变为曲线则曲线C的方程为()
6、A B. C D.3在同一平面坐标系中,经过伸缩变换后,曲线C变为曲线,求曲线C的方程并画出图象。【知识要点归纳】(1) 以坐标法为工具,用代数方法研究几何图形是解析几何的主要问题,它的特点是“数形结合”。(2) 能根据问题建立适当的坐标系又是能否准确解决问题的关键。(3) 设点P(x,y)是平面直角坐标系中的任意一点,在变换的作用下,点P(x,y)对应到点,称为平面直角坐标系中的坐标伸缩变换。【潜能强化训练】1.在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换后的图形。 (1) (2)。2,已知点A为定点,线段BC在定直线上滑动,已知|BC|=4,点A到直线的距离为3,求ABC的外心的
7、轨迹方程。一、坐标系解题能力测试1.C 2.A 3.取BC所在直线为X轴,线段BC中垂线为Y轴建立直角坐标系,得x2+y2=9(y0) 4. x2+y2=1潜能强化训练1.(1).(2) .2.以为X轴,过定点A垂直于X轴的直线为Y轴建立直角坐标系,设ABC外心为P(x,y),则A(0,3)B(x-2,0)C(x+2,0),由|PA|=|PB|得。1.2.1极坐标系的的概念学习目标1能在极坐标系中用极坐标刻画点的位置.2.体会在极坐标系和平面直角坐标系中刻画点的位置的区别.学习过程一、学前准备情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的
8、平面示意图,假设某同学在教学楼处。(1)他向东偏60方向走120M后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?二、新课导学探究新知(预习教材P8P10,找出疑惑之处)1、如右图,在平面内取一个 ,叫做 ;自极点引一条射线,叫做 ;再选定一个 ,一个 (通常取 )及其 (通常取 方向),这样就建立了一个 。 2、设是平面内一点,极点与的距离叫做点的 ,记为 ;以极轴为始边,射线为终边的角叫做点的 ,记为 。有序数对 叫做点的 ,记作 。3、思考:直角坐标系与极
9、坐标系有何异同? _.应用示例例题1:(1)写出图中A,B,C,D,E,F,G各点的极坐标.(2):思考下列问题,给出解答。平面上一点的极坐标是否唯一?若不唯一,那有多少种表示方法? 坐标不唯一是由谁引起的?不同的极坐标是否可以写出统一表达式?本题点的极坐标统一表达式。答:反馈练习OX在下面的极坐标系里描出下列各点小结:在平面直角坐标系中,一个点对应 个坐标表示,一个直角坐标对应 个点。极坐标系里的点的极坐标有 种表示,但每个极坐标只能对应 个点。三、总结提升1本节学习了哪些内容?答:能在极坐标系中用极坐标刻画点的位置.1已知,下列所给出的能表示该点的坐标的是A B C D2、在极坐标系中,与
10、(,)关于极轴对称的点是( )A、 B、 C、 D、 3、设点P对应的复数为-3+3i,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P的极坐标为( ) A.(,) B. (,) C. (3,) D. (3,)4、(课本习题1.2第二题)1.2.2. 极坐标与直角坐标的互化学习目标1掌握极坐标和直角坐标的互化关系式。2. 会实现极坐标和直角坐标之间的互化。学习过程一、学前准备情境1:若点作平移变动时,则点的位置采用直角坐标系描述比较方便;情境2:若点作旋转变动时,则点的位置采用极坐标系描述比较方便。问题1:如何进行极坐标与直角坐标的互化?问题2:平面内的一个点的直角坐标是,这个点如何用极坐标
11、表示?二、新课导学探究新知(预习教材P11P11,找出疑惑之处)直角坐标系的原点O为极点,轴的正半轴为极轴,且在两坐标系中取相同的长度单位。平面内任意一点P的指教坐标与极坐标分别为和,则由三角函数的定义可以得到如下两组公式: 说明:1、上述公式即为极坐标与直角坐标的互化公式2、通常情况下,将点的直角坐标化为极坐标时,取0,。3、互化公式的三个前提条件(1). 极点与直角坐标系的原点重合;(2). 极轴与直角坐标系的x轴的正半轴重合;(3). 两种坐标系的单位长度相同. 应用示例例1将点的极坐标化成直角坐标。(教材P11例3)解:例2将点的直角坐标化成极坐标(教材P11例4)解:反馈练习1点,则
12、它的极坐标是A B C D2点的直角坐标是,则点的极坐标为( )A B C D 三、总结提升1本节学习了哪些内容?答:极坐标和直角坐标之间的互化。课后作业1.若A,B,则|AB|=_5_,=_6_。(其中O是极点)2.已知点的极坐标分别为,求它们的直角坐标。3.已知点的直角坐标分别,为求它们的极坐标。4.在极坐标系中,已知两点,求两点间的距离。5. 已知点,试判断的形状。(等腰直角三角形)圆的极坐标方程本课提要:本节课的重点是掌握一些特殊位置下的圆(如过极点或圆心在极点的圆)的极坐标方程.课前小测一、 温故而知新 1圆的极坐标方程是 .2曲线的直角坐标方是 .典型问题二 重点、难点都在这里 【
13、问题1】:求以点为圆心,为半径的圆C的极坐标方程.3求圆心在点(3,0),且过极点的圆的极坐标方程.4求以为圆心,4为半径的圆的极坐标方程.【问题2】:已知圆心的极坐标为,圆的半径为,求圆的极坐标方程.【问题3】:已知一个圆的极坐标方程是,求圆心的极坐标与半径.三练习 5在极坐标系中,求适合下列条件的圆的极坐标方程:(1)圆心在,半径为1的圆;(2)圆心在,半径为的圆.6把下列极坐标方程化为直角坐标方程:(1);(2).7求下列圆的圆心的极坐标:(1);(2).8求圆的圆心的极坐标与半径.变式训练四、试试你的身手呀9设有半径为4的圆,它在极坐标系内的圆心坐标是,则这个圆的极坐标方程是 . 10
14、两圆和的圆心距是 .11在圆心的极坐标为,半径为的圆中,求过极点的弦的中点的轨迹.五、本课小结你有什么收获?写下你的心得课后作业12极坐标方程所表示的曲线是 .13极坐标方程分别是和的两个圆的圆心距是 .14(2000年全国高考题)以极坐标系中的点(1,1)为圆心,1为半径的圆的方程是( )A. B. C. D. 答案【问题1】解:,解答见课本.【问题2】解:如图,设圆上任意一点为,在POM中,由余弦定理得圆的极坐标方程为.【问题3】解:圆的直角坐标方程为,即,圆心的直角坐标为,极坐标为,半径为5.1; 2;3; 4;5(1); (2);6(1);(2);7(1);(2);8,3; 9;10;
15、 11轨迹方程是,它表示以为圆心,为半径的圆;12圆;13;14。直线的极坐标方程本课提要:本节课的重点是掌握一些特殊位置下的直线(如过极点或垂直于极轴的直线)的极坐标方程.课前小测一、 温故而知新 1直线的极坐标方程是 .2曲线的直角坐标方程是 .二、典型例题【问题1】:求经过极点,从极轴到直线的夹角是的直线的极坐标方程.练一练:3经过极点,且倾斜角是的直线的极坐标方程是 .4直线的直角坐标方程是 .【问题2】:设点P的极坐标为,直线过点P且与极轴所成的角为,求直线的极坐标方程.三、技能训练懂了,不等于会了5在极坐标系中,求适合下列条件的直线的极坐标方程:(1)过极点,倾斜角是的直线;(2)
16、过点,并且和极轴垂直的直线.6把下列极坐标方程化为直角坐标方程:(1);(2).7求下列直线的倾斜角:(1);(2).8已知直线的极坐标方程为,求点到这条直线的距离.四、变式训练试试你的身手呀9过点,且平行于极轴的直线的极坐标方程为 . 10直线关于直线对称的直线的极坐标方程为_五、本课小结你有什么收获?写下你的心得六、课后作业11 直线和直线的位置关系是 12在极坐标系中,点到直线的距离 .13在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线于A、B两点,则 14(课本习题1.3第6题)答案【问题1】解:,【问题2】解:, 1;2;3;4;5(1);(2);6(1);(2);7(1);
17、(2);8;9;10;11平行;12;13.14.解答见课本柱坐标系与球坐标系简介本课提要:本节课的重点是了解在柱坐标系、球坐标系中刻画空间中点的位置的方法,并掌握柱坐标、球坐标与直角坐标的互化.一、课前小测 温故而知新 1如何确定一个圆柱侧面上的点的位置?2如何确定一个球面上的点的位置?二、典型例题重点、难点都在这里 【问题1】:(1)点A的柱坐标是,则它的直角坐标是 ;(2)点B的直角坐标是,则它的柱坐标是 .3点P的柱坐标是,则它的直角坐标是 .4点Q的直角坐标是,则它的柱坐标是 .【问题2】:(1)点A的球坐标是,则它的直角坐标是 ;(2)点B的直角坐标是,则它的球坐标是 .【问题3】
18、:建立适当的球坐标系,表示棱长为2的正方体的顶点.技能训练三、懂了,不等于会了5将下列各点的柱坐标化为直角坐标:.6将下列各点的球坐标化为直角坐标:.7将下列各点的直角坐标化为球坐标:.8建立适当的柱坐标系与球坐标系,表示棱长为3的正四面体的四个顶点.变式训练四、试试你的身手呀9设M的球坐标为,则它的柱坐标为 .10在球坐标系中, 与两点间的距离是 .11球坐标满足方程的点所构成的图形是什么?并将此方程化为直角坐标方程.五、本课小结你有什么收获?写下你的心得应该记住的内容: 重点内容: 个人心得: 试题链接六、走出教材,你真有长进啦12点A的柱坐标是,则它的直角坐标是 .13点M的球坐标是,则它的直角坐标是 .14点P的直角坐标是,则它的柱坐标是 .15在球坐标系中,与两点间的距离是 .答案【问题1】解:(1),点A的直角坐标是;(2),点B的柱坐标是.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版个人住房贷款担保合同汇编2篇
- 二零二五年度高效节水灌溉与机耕一体化服务合同3篇
- 医疗器械2025年度信息安全与隐私保护合同3篇
- 二零二五年度车辆抵押担保担保公司服务合同范本3篇
- 基于二零二五年度的智能家居技术服务合同2篇
- 二零二五版EPS线条工程节能评估与认证合同3篇
- 二零二五版桉树种植抚育及产品回收合同3篇
- 二零二五年度特色餐厅股权置换合同协议书3篇
- 二零二五年度航空货运服务保障合同3篇
- 二零二五版锅炉安全检查与安装服务合同范本3篇
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
评论
0/150
提交评论