4.3、一元一次不等式的解法_第1页
4.3、一元一次不等式的解法_第2页
4.3、一元一次不等式的解法_第3页
4.3、一元一次不等式的解法_第4页
4.3、一元一次不等式的解法_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021/3/271一元一次不等式的解法一元一次不等式的解法本课内容本节内容4.32021/3/272 知识回顾知识回顾 1、什么是一元一次方程、什么是一元一次方程 含有一个未知数含有一个未知数,并且未知数的最高次幂并且未知数的最高次幂 为为1的的 2、解一元一次方程的基本步骤、解一元一次方程的基本步骤 去分母、去括号、移项、合并同类项、系去分母、去括号、移项、合并同类项、系数化为数化为1 2021/3/273动脑筋动脑筋 已知一台升降机的最大载重量是已知一台升降机的最大载重量是1200kg, ,在在一名重一名重75kg的工人乘坐的情况下的工人乘坐的情况下, ,它最多能装载它最多能装载多少件多

2、少件25kg重的货物重的货物? ?2021/3/274本问题中涉及的数量关系是本问题中涉及的数量关系是: : 设能载设能载x件件25kg重的货物重的货物, ,因为升降机最大载重因为升降机最大载重量是量是1200kg, ,所以有所以有 7525x1200. 工人重工人重 + + 货物重货物重 最大载重量最大载重量.2021/3/275结论结论 含有一个未知数含有一个未知数, ,且含未知数的项的次数是且含未知数的项的次数是1的不等式的不等式, ,称为称为一元一次不等式一元一次不等式. .像像75 + 25x 1200 这样这样, ,2021/3/276结论结论 含有一个未知数含有一个未知数, ,且

3、含未知数的项的次数是且含未知数的项的次数是1的不等式的不等式, ,称为称为一元一次不等式一元一次不等式. .像像75 + 25x 1200 这样这样, ,2021/3/277 为了求出升降机能装载货物的件数为了求出升降机能装载货物的件数, ,需要需要求出满足不等式求出满足不等式7525x1 200的的x的值的值.如何求呢如何求呢? ?2021/3/278 与解一元一次方程类似与解一元一次方程类似, ,我们将根据不我们将根据不等式的基本性质等式的基本性质, ,进行如下步骤进行如下步骤: :将将式移项式移项, ,得得25x 1200- -75,将将式两边都除以式两边都除以25(即将即将x的系数化为

4、的系数化为1), ,75+25x1200. 即即 25x 1125. 得得 x45.因此因此, ,升降机最多装载升降机最多装载45件件25kg重的货物重的货物.2021/3/279 我们把满足一个不等式的未知数的每一个我们把满足一个不等式的未知数的每一个值值, ,称为这个不等式的一个称为这个不等式的一个解解.结论结论例如,例如,5.4,6, 都是都是3x15的解的解. .这样的解有无数个这样的解有无数个. .1932021/3/2710结论结论 我们把一个不等式的解的全体称为这个不我们把一个不等式的解的全体称为这个不等式的等式的解集解集.例如例如 我们用我们用x5表示表示3x15的解集的解集.

5、 .2021/3/2711结论结论 求一个不等式的解集的过程称为求一个不等式的解集的过程称为解不等式解不等式. .2021/3/2712 今后我们在解一元一次不等式时今后我们在解一元一次不等式时, ,将利用前面将利用前面讲述的不等式的基本性质讲述的不等式的基本性质, ,将原不等式化成形如将原不等式化成形如x a( (或或xa, ,xa)的不等式的不等式, ,就可得到原不等式就可得到原不等式的解集的解集. .小提示2021/3/2713例例1 解下列一元一次不等式解下列一元一次不等式 :举举例例(1) 2- -5x 8- -6x ;(2) .531 32xx 2021/3/2714解解(1) 原

6、不等式为原不等式为2- -5x 8- -6x 将同类项放在一起将同类项放在一起即即,得得 x 6 移项移项, ,得得 - -5x+6x 8- -2计算结果计算结果2021/3/2715解解首先将分母去掉首先将分母去掉去括号去括号,得得 2x - -10 + 6 9x 去分母去分母, ,得得 2( (x - -5) )+16 9x移项移项,得得 2x - - 9x 10 - - 6去括号去括号将同类项放在一起将同类项放在一起(2) 原不等式为原不等式为531 32 xx合并同类项合并同类项,得得: - -7x 4 两边都除以两边都除以- -7,得得 x 47 计算结果计算结果根据不等式性质根据不

7、等式性质32021/3/2716议一议议一议 解一元一次不等式与解一元一次方程的依解一元一次不等式与解一元一次方程的依据和步骤有什么异同点据和步骤有什么异同点? 它们的依据不相同它们的依据不相同.解一元一次方程的依据解一元一次方程的依据是是等式的性质等式的性质, ,解一元解一元一次不等式的依据是一次不等式的依据是不不等式的性质等式的性质. 它们的步骤基本相它们的步骤基本相同同, ,都是去分母、去括都是去分母、去括号、移项、合并同类项、号、移项、合并同类项、两边都除以未知数的系两边都除以未知数的系数数. . 这些步骤中这些步骤中, ,要特别注意的是要特别注意的是: :不不等式两边都乘(或除以)同

8、一个负数等式两边都乘(或除以)同一个负数, ,必须改变不等号的方向必须改变不等号的方向.这是与解一这是与解一元一次方程不同的地方元一次方程不同的地方.2021/3/2717练习练习 1. 解下列不等式解下列不等式: : (1) - -5x 10 ; ; (2)4x - -3 10 x + 7 . .2021/3/2718解解(1) 原不等式为原不等式为 - -5x 10 方程两边同除以方程两边同除以- -5, x - -2(2) 原不等式为原不等式为 4x - -3 10 x + 7 移项,得移项,得 4x - -10 x 3+7 化简,得化简,得 - -6x 53- -2021/3/2719

9、 2. 解下列不等式解下列不等式: :(1) 3x - -1 2( (2- -5x) ) ; ;(2) . .22332x x 2021/3/2720解解(1) 原不等式为原不等式为 3x - -1 2( (2- -5x) ) 去括号,得去括号,得 3x- -1 4- -10 x移项,得移项,得 3x+10 x 1+4化简,得化简,得 13x 5两边同除以两边同除以13, x 513(2) 原不等式为原不等式为 去分母,得去分母,得 2( (x+2) ) 3( (2x- -3) )去括号,得去括号,得 2x+4 6x- -9移项,得移项,得 2x - -6x - -4- -9 化简,得化简,得

10、 - -4x - -13两边同除以两边同除以 - -4, x 13422332 x x 2021/3/2721 一个不等式的解集常常可以借助数一个不等式的解集常常可以借助数轴直观地表示出来轴直观地表示出来.2021/3/2722先在数轴上标出表示先在数轴上标出表示2的点的点A则点则点A右边所有的点表示的数右边所有的点表示的数都大于都大于2,而点而点A左边所有的点表左边所有的点表示的数都小于示的数都小于2因此可以像图那样表示因此可以像图那样表示3x6的解集的解集x2.动脑筋动脑筋如何在数轴上表示出不等式如何在数轴上表示出不等式3x6的解集呢的解集呢? ?容易解得不等式容易解得不等式3x6的解集是

11、的解集是x2.0123456- -1A 把表示把表示2 的点的点 画成空心圆圈,画成空心圆圈,表示解集不包括表示解集不包括2.2021/3/2723例例2 解不等式解不等式12- -6x2( (1- -2x) ),并把它的解集在并把它的解集在 数轴上表示出来数轴上表示出来 :举举例例解解首先将括号去掉首先将括号去掉去括号去括号,得得 12 - -6x 2- -4x移项移项,得得 - -6x+4x 2- -12将同类项放在一起将同类项放在一起合并同类项合并同类项,得得: - -2x - -10两边都除以两边都除以- -2,得得 x 5根据不等式基本性质根据不等式基本性质2原不等式的解集在数轴上表

12、示如图所示原不等式的解集在数轴上表示如图所示.- -10123456解集解集x5中包含中包含5,所以在数轴上将表示所以在数轴上将表示5的点画成实的点画成实心圆点心圆点.2021/3/2724举举例例解解解这个不等式解这个不等式,得得 x 6x6在数轴上表示如图所示在数轴上表示如图所示:- -10123456根据题意,得根据题意,得 x +2 0所以,当所以,当x6时,代数式时,代数式 x+2的值大于或等于的值大于或等于0.由图可知由图可知,满足条件的正整数有满足条件的正整数有 1,2,3,4,5,6.例例3 当当x取什么值时,代数式取什么值时,代数式 x+2的值大于或的值大于或等于等于0?并求

13、出所有满足条件的正整数?并求出所有满足条件的正整数.13 13 13 2021/3/2725练习练习1. 解下列不等式解下列不等式, ,并把它们的解集在数轴上表示并把它们的解集在数轴上表示出来出来: : (1) 4x - -3 2x+7 ; ; (2) . .33524x x 2021/3/2726解解(1) 原不等式为原不等式为 4x - -3 2x+7 移项移项,得得 4x- -2x 3+7化简化简,得得 2x 10两边同除以两边同除以2, x - -2 解得解得 y 3 解解- -10123452021/3/2732中考中考 试题试题例例1 去分母,得去分母,得 6+3x4x+2. 移项

14、,合并同类项,得移项,合并同类项,得 x4. . 正整数解为正整数解为 1,2,3,4.解解 求不等式求不等式 的正整数解的正整数解. .2+2 +123xx 首先求出不等式的解集首先求出不等式的解集.然后求出正整数解然后求出正整数解.分析分析2021/3/2733中考中考 试题试题例例2 已知已知 且且xy,则,则k的取值范围是的取值范围是 . .32 =3 +1 43 =1 xykxyk- - - -,解解 3- -2,得,得 x = 7k+5 . 将将代入代入 ,得,得 3( (7k+5) )- -2y=3k+1. . 化简,整理,得化简,整理,得 y=9k+7. . x y, 7k+59k+7. .解之,得解之,得k- -1. .32 =3 +1 43 =1 xykxyk- -. k-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论