版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上导数及其应用单元测试题(理科)(满分150分 时间:120分钟 )一、 选择题(本大题共8小题,共40分,只有一个答案正确)1函数的导数是( )(A) (B) (C) (D) 2函数的一个单调递增区间是( )(A) (B) (C) (D) 3已知对任意实数,有,且时,则时( )ABCD4( )(A) (B) (C) (D)5曲线在点处的切线与坐标轴所围三角形的面积为( )6设是函数的导函数,将和的图象画在同一个直角坐标系中,不可能正确的是( )7已知二次函数的导数为,对于任意实数都有,则的最小值为( )A B C D8设在内单调递增,则是的()充分不必要条件必要不充分
2、条件充分必要条件既不充分也不必要条件二填空题(本大题共6小题,共30分)9用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的长、宽、高各为 时,其体积最大.10将抛物线和直线围成的图形绕轴旋转一周得到的几何体的体积等于 11已知函数在区间上的最大值与最小值分别为,则12对正整数n,设曲线在x2处的切线与y轴交点的纵坐标为,则数列的前n项和的公式是 13点P在曲线上移动,设在点P处的切线的倾斜角为为,则的取值范围是 14已知函数(1)若函数在总是单调函数,则的取值范围是 . (2)若函数在上总是单调函数,则的取值范围 .(3)若函数在区间(-3,1)上单
3、调递减,则实数的取值范围是 .三解答题(本大题共6小题,共12+12+14+14+14+14=80分)15设函数(1)证明:的导数;(2)若对所有都有,求的取值范围16设函数分别在处取得极小值、极大值.平面上点的坐标分别为、,该平面上动点满足,点是点关于直线的对称点,.求(1)求点的坐标; (2)求动点的轨迹方程. 17已知函数(x>0)在x = 1处取得极值-3-c,其中a,b,c为常数。(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式恒成立,求c的取值范围。18已知(1)当时,求函数的单调区间。(2)当时,讨论函数的单调增区间。(3)是否存
4、在负实数,使,函数有最小值3?19已知函数(1)求曲线在点处的切线方程;(2)若过点可作曲线的三条切线,求实数的取值范围.20已知函数,其中(1)若是函数的极值点,求实数的值;(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围【理科测试解答】一、选择题1;或(理科要求:复合函数求导)2, 选(A) 或3.(B)数形结合4(D)5(D)6(D)7(C)8(B)二、填空题92cm,1cm,1.5cm ; 设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(
5、x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.10. (图略)113212,令x=0,求出切线与y轴交点的纵坐标为,所以,则数列的前n项和13.14. (1)三、解答题15解:(1)的导数由于,故(当且仅当时,等号成立)(2)令,则,()若,当时,故在上为增函数,所以,时,即()若,方程的正根为,此时,若,则,故在该区间为减函数所以,时,即,与题设相矛盾综上,满足条件的的取值范围是16解:(1)由题意知,因此,从而又对求导得由题意,因此,解得(2)由(I)知(),令,解得当时,此
6、时为减函数;当时,此时为增函数因此的单调递减区间为,而的单调递增区间为(3)由(II)知,在处取得极小值,此极小值也是最小值,要使()恒成立,只需即,从而,解得或所以的取值范围为17解: (1)令解得当时, 当时, ,当时,所以,函数在处取得极小值,在取得极大值,故,所以, 点A、B的坐标为.(2) 设,所以,又PQ的中点在上,所以消去得.另法:点P的轨迹方程为其轨迹为以(0,2)为圆心,半径为3的圆;设点(0,2)关于y=2(x-4)的对称点为(a,b),则点Q的轨迹为以(a,b),为圆心,半径为3的圆,由,得a=8,b=-218(1)或递减; 递增; (2)1、当递增;2、当递增;3、当或
7、递增; 当递增;当或递增;(3)因由分两类(依据:单调性,极小值点是否在区间-1,0上是分类“契机”:1、当 递增,解得2、当由单调性知:,化简得:,解得不合要求;综上,为所求。19解(1) 2分曲线在处的切线方程为,即;4分(2)过点向曲线作切线,设切点为则则切线方程为6分整理得过点可作曲线的三条切线方程(*)有三个不同实数根.记令或1. 10分则的变化情况如下表极大极小当有极大值有极小值. 12分由的简图知,当且仅当即时,函数有三个不同零点,过点可作三条不同切线.所以若过点可作曲线的三条不同切线,的范围是.14分20(1)解法1:,其定义域为, 是函数的极值点,即 , 经检验当时,是函数的极值点, 解法2:,其定义域为, 令,即,整理,得,的两个实根(舍去),当变化时,的变化情况如下表:0极小值依题意,即, (2)解:对任意的都有成立等价于对任意的都有 当1,时,函数在上是增函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校工作计划
- 闭门器配件行业市场发展及发展趋势与投资战略研究报告
- 四年级的科学教学工作计划
- 仓管的实习自我总结十篇
- 中秋节活动策划方案范文锦集六篇
- 三年级数学教师自我鉴定
- 初中语文课前演讲稿10篇
- 生活中的美初中作文600字【5篇】
- 有关晚会策划方案范文汇编5篇
- 旅游社实习报告四篇
- 《湖北省市政基础设施工程质量标准化图册》(燃气管网工程)
- 无机化学实验试题
- 衡重式及重力式挡土墙自动计算表
- 有关大学生寒假生活计划-大学生的寒假计划
- 2024年01月11129土木工程力学(本)期末试题答案
- 家政公司员工合同范例
- 2024年考研(英语一)真题及参考答案
- 山东省济南市(2024年-2025年小学四年级语文)人教版期末考试((上下)学期)试卷及答案
- 肿瘤科常见急重症
- 03SG715-1蒸压轻质加气混凝土板(NACL)构造详图
- 尽职调查工作底稿1_公司业务调查
评论
0/150
提交评论