




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 新人教版新人教版八年级上册八年级上册第十一章全等三角形第十一章全等三角形 新人教版新人教版八年级上册八年级上册第十三章全等三角形第十三章全等三角形AB=DE BC=EF CA=FD A= D B=E C= FABCDEF 1、 什么叫全等三角形?什么叫全等三角形?能够重合能够重合的两个三角形叫的两个三角形叫 全等三角形全等三角形。2、 全等三角形有什么性质?全等三角形有什么性质?1.只给一个条件(一组对应边相等或一组对应角相等)。只给一个条件(一组对应边相等或一组对应角相等)。只给一条边:只给一条边:只给一个角:只给一个角:606060探究:探究:2.给出两个条件:给出两个条件:一边一内角:
2、一边一内角:两内角:两内角:两边:两边:303030303050502cm2cm4cm4cm可以发现按这可以发现按这些条件画的三些条件画的三角形都不能保角形都不能保证一定全等。证一定全等。 三边对应相等的两个三角形全等(可以三边对应相等的两个三角形全等(可以简写为简写为“边边边边边边”或或“SSS”)。)。 已知三角形三条边分别是已知三角形三条边分别是 4cm4cm,5cm5cm,7cm7cm,画画出这个三角形,把所画的三角形出这个三角形,把所画的三角形分别分别剪剪下来,并与同伴下来,并与同伴比一比比一比,发现什么?,发现什么?思考:思考:你能用你能用“边边边边边边”解释三角形具解释三角形具有
3、稳定性吗?有稳定性吗? 判断两个三角形全等的推理过程,叫做证明三角形判断两个三角形全等的推理过程,叫做证明三角形全等。全等。ABCDEF用用 数学语言表述:数学语言表述:在在ABC和和 DEF中中 ABC DEF(SSS)FDCAEFBCDEAB例例1. 如下图,如下图,ABC是一个刚架,是一个刚架,AB=AC,AD是连接是连接A与与BC中点中点D的支架。的支架。 求证:求证: ABD ACD分析:分析:要证明要证明 ABD ACD,首先看这两个三角形的三条边是首先看这两个三角形的三条边是否对应相等。否对应相等。结论结论:从这题的证明中可以看出,证明是由:从这题的证明中可以看出,证明是由题设(
4、已知)出发,经过一步步的推理,最题设(已知)出发,经过一步步的推理,最后推出结论正确的过程。后推出结论正确的过程。准备条件:证全等时要用的间接准备条件:证全等时要用的间接条件要先证好;条件要先证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤: 已知已知AC=FE,BC=DE,点,点A,D,B,F在在一条直线上,一条直线上,AD=FB(如图),要用(如图),要用“边边边边边边”证明证明ABC FDE,除了已知中的,除了已知中的AC=FE,BC=DE以
5、外,还应该有什么条件?以外,还应该有什么条件?怎样才能得到这个条件?怎样才能得到这个条件?解:要证明解:要证明ABC FDE,还应该有还应该有AB=DF这个条件这个条件 DB是是AB与与DF的公共部分,的公共部分,且且AD=BF AD+DB=BF+DB 即即 AB=DF 如图,如图,AB=AC,AE=AD,BD=CE,求证:求证:AEB ADC。证明:证明:BD=CE BD-ED=CE-ED,即即BE=CD。在在AEB和和ADC中,中,AB=ACAE=ADBE=CD AEB ADC CABDE小结小结2. 三边对应相等的两个三角形全等(边边边三边对应相等的两个三角形全等(边边边或或SSS););3.书写格式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 激励股权授予协议书
- 2024高校辅导员招聘考察内容试题及答案
- 临床患者体验与满意度试题及答案
- 实验委托协议书附件
- 轮胎代理协议书模板
- 教师聘用协议书无效
- 劳务派遣延期协议书
- 2024年花艺师多元文化的影响与考题试题及答案
- 市政二级实务试题及答案
- 招聘辅导员能力测评题目试题及答案
- 物业管理之工程管理
- 生态农业发展与绿色金融的融合路径
- 附着龈重建在口腔种植修复中的应用探索
- 《欧式田园风》课件
- 2024年德州市人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 订单与合同管理制度
- 【MOOC期末】《英美文学里的生态》(北京林业大学)期末中国大学慕课MOOC答案
- 外科患者疼痛护理与管理
- 《家校社协同育人“教联体”工作方案》专题培训
- 《异常子宫出血诊断与治疗指南(2022版)》解读
- 2024年六西格玛黄带认证考试练习题库(含答案)
评论
0/150
提交评论