下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2006年中考复习之等腰三角形知识考点:灵活运用等腰(等边)三角形的判定定理与性质定理,以及底边上的高、中线、顶角的平分线三线合一的性质进行有关的证明和计算。精典例题:【例1】等腰三角形一腰上的高与腰长之比为12,则等腰三角形的顶角为( )A、300 B、600 C、1500 D、300或1500 分析:如图所示,在等腰ABC中,CD为腰AB上的高,CDAB12,ACAB,CDAC12,在RtABC中有答案D。 【例2】如图,在ABC中,ACBC,ACB900,D是AC上一点,AEBD的延长线于E,又AEBD,求证:BD是ABC的角平分线。分析:ABC的角平分线与AE边上的高重合,故可作辅助线
2、补全图形,构造出全等三角形(证明略)。探索与创新:【问题一】如图,在等腰直角ABC中,AD为斜边上的高,以D为端点任作两条互相垂直的射线与两腰分别相交于E、F点,连结EF与AD相交于G,试问:你能确定AED和AGF的大小关系吗?分析与结论:依题意有ADEFDC,EDF为等腰直角三角形,又AEDAEFDEG,AGFAEFEAG,事实上EAG与DEG都等于450,故AEDAGF。评注:加强对图形的分析、发现、挖掘等腰三角形、全等三角形,用相同或相等角的代数式表示AED、AGF,从而比较其大小是本题的解题关键。 【问题二】在平面上有且只有4个点,这4个点有一个独特的性质每两个点之间的距离有且只有两种
3、长度。例如正方形ABCD中,ABBCCDDA,ACBD。请你画出具有这种独特性质的四种不同的图形,并标注相等的线段。略解:(1)ABADDBDCBD,AC (2)ABACADBC,BDDC (3)ABAC,AOBOCODO (4)ABBCAC,AOBOCO (5)ABADCD,ACBCBD评注:本例突破了常规作图题的思维形式,是一道很好的开放型试题,要求学生既要善于动脑,又要善于动手。跟踪训练:一、填空题:1、等腰三角形的两外角之比为52,则该等腰三角形的底角为 。2、在ABC中,ABAC,BD平分ABC交AC于D,DE垂直平分AB,E为垂足,则C 。3、等腰三角形的两边长为4和8,则它腰上的
4、高为 。4、在ABC中,ABAC,点D在AB边上,且BDBCAD,则A的度数为 。5、如图,ABBCCD,ADAE,DEBE,则C的度数为 。 6、如图,D为等边ABC内一点,DBDA,BPAB,DBPDBC,则BPD 。7、如图,在ABC中,AD平分BAC,EGAD分别交AB、AD、AC及BC的延长线于点E、H、F、G,已知下列四个式子: 1(23) 12(32)4(32) 41其中有两个式子是正确的,它们是 和 。二、选择题:1、等腰三角形中一内角的度数为500,那么它的底角的度数为( )A、500 B、650 C、1300 D、500或6502、如图,D为等边ABC的AC边上一点,且AC
5、EABD,CEBD,则ADE是( ) A、等腰三角形 B、直角三角形 C、不等边三角形 D、等边三角形 3、如图,在ABC中,ABC600,ACB450,AD、CF都是高,相交于P,角平分线BE分别交AD、CF于Q、S,那么图中的等腰三角形的个数是( ) A、2 B、3 C、4 D、54、如图,已知BO平分CBA,CO平分ACB,且MNBC,设AB12,BC24,AC18,则AMN的周长是( ) A、30 B、33 C、36 D、39 5、如图,在五边形ABCDE中,AB1200,EAABBCDCDE,则D( ) A、300 B、450 C、600 D、67.50三、解答题:1、如图,在ABC
6、中,ABAC,D、E、F分别为AB、BC、CA上的点,且BDCE,DEFB。求证:DEF是等腰三角形。2、为美化环境,计划在某小区内用30平方米的草皮铺设一块边长为10米的等腰三角形绿地。请你求出这个等腰三角形绿地的另两边长。3、如图,在锐角ABC中,ABC2C,ABC的平分线与AD垂直,垂足为D,求证:AC2BD。 4、在等边ABC的边BC上任取一点D,作DAE600,AE交C的外角平分线于E,那么ADE是什么三角形?证明你的结论。参考答案一、填空题:1、300;2、720;3、;4、360;5、360;6、300;7、二、选择题:DDDAC三、解答题:1、证DBEECF2、提示:分两种情况讨论。不妨设AB10米,作CDAB于D,则CD6米。(1)当AB为底边时,AC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年板材行业新材料研发与采购合同4篇
- 二零二五年度砂石料采购合同的合同标的与属性3篇
- 二零二五年度木门市场调研与营销策划合同4篇
- 二零二五年度文化演出代理注销及票务销售合同4篇
- 机械(设备)买卖合同范本
- 超市供货合同
- 2025年度茶园茶叶种植补贴与金融支持合同4篇
- 2025年度大连市正规商业地产租赁合同模板4篇
- 稻米品牌推广与市场拓展2025年度合同
- 2025年度工业自动化设备采购合同规范文本4篇
- 2024-2025学年人教版数学六年级上册 期末综合试卷(含答案)
- 收养能力评分表
- 山东省桓台第一中学2024-2025学年高一上学期期中考试物理试卷(拓展部)(无答案)
- 中华人民共和国保守国家秘密法实施条例培训课件
- 管道坡口技术培训
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 皮肤储存新技术及临床应用
- 外研版七年级英语上册《阅读理解》专项练习题(含答案)
- 2024年辽宁石化职业技术学院单招职业适应性测试题库必考题
- 上海市复旦大学附中2024届高考冲刺模拟数学试题含解析
评论
0/150
提交评论