低压配电网功率因数补偿系统设计软件_第1页
低压配电网功率因数补偿系统设计软件_第2页
低压配电网功率因数补偿系统设计软件_第3页
低压配电网功率因数补偿系统设计软件_第4页
低压配电网功率因数补偿系统设计软件_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-摘 要在电力系统中,由于大量输变电设备的存在,其在使用过程中产生磁场,形成感性负载。感性负载的存在导致电网功率因数的下降。为了改善和提高电力系统的电压质量,充分发挥输变电设备的效能,就必须就地平衡无功。本装置设计的目的正是利用控制投切电容组数来到达电感平衡。低压配电网功率因数补偿系统由控制核心电路和补偿执行机构组成。主控电路主要完成采样和数据处理并输出控制信号,执行机构采用继电器控制电容组的投切。其中CPU采用80C196KB作为主控芯片,控制电网无功功率、电压、电流等参数的实时监测;A/D转换采用12位的高性能A/D转换器MA*197;通过MOC3083来控制晶闸管的过零触发导通,从而投切

2、电容器,到达了甚至消除了合闸涌流的目的。显示局部为DMLS字符液晶显示模块。软件局部采用汇编语言及C语言进展编程,主要包括主程序的设计、A/D转换、数据处理、电容器的投切控制等几大局部。本装置具有响应快,性能稳定,操作方便等特点,具有广阔的应用前景。关键词:无功补偿;功率因数;晶闸管投切电容器;触发脉冲 目 录第1章 绪论11.1功率因数补偿器的设计3第2章 无功补偿装置的芯片选择与分析42.1 CPU芯片的选择与应用42.2 EPROM 2725692.3A/D转换芯片的选择102.4液晶显示模块LCD142.5时钟芯片19第3章 系统软件设计243.1 系统软件的设计243.1.1 程序设

3、计语言的选择243.1.2 主程序的设计253.1.3 主程序的说明263.2 电容器投切判断及投切控制子程序设计27参考文献28. z-1.1功率因数补偿器的设计研究低压配电网智能功率因数补偿器的意义在于通过对无功功率的补偿,来改善和提高电力系统电压质量,充分发挥输变电设备的效能,减少电力损失,保证电网平安经济的运行。其主要设计包括以下几个方面:1.补偿器的主电路图的设计:主要包括电容器的分组,每组由晶闸管控制,根据电网的无功需求并且在最正确时刻来进展投切。2.系统的硬件电路图的设计:补偿器的控制芯片采用MCS-96系列单片机80C196KB;A/D转换采用12位的高性能A/D转换器MA*1

4、97;通过MOC3083来控制晶闸管的过零触发导通,从而投切电容器;并用时钟芯片DS12887来记录时间并具有掉电保护的功能。 3.系统的软件设计:数据采集及计算局部采用快速傅立叶算法,对一系列的电参量进展分析计算,以及显示电参量。系统的编程采用汇编语言及C语言。 第二章 无功补偿装置的芯片选择与分析自从1976年Intel公司推出第一批单片机以来,80年代单片机技术进入快速开展时期,近年来,随着大规模集成电路的开展,单片机继续朝快速、高性能方向开展,从4位、8位单片机开展到16位、32位单片机。单片机主要用于控制,它的应用领域普及各行各业,大到航天飞机,小至日常生活中的冰箱、彩电,单片机都可

5、以大显其能。单片机在国的三大领域中应用得十分广泛:第一是家用电器业,例如全自动洗衣机、智能玩具;第二是通讯业,包括、手机和BP机等等;第三是仪器仪表和计算机外设制造,例如软盘、硬盘、收银机、电表。除了上述传统领域外,汽车、电子工业在国外也是单片机应用十分广泛的一个领域。它本钱低、集成度高、功耗低、控制功能多能灵活的组装成各种智能控制装置,由它构成的智能仪表解决了长期以来测量仪器中的误差的修正、线性处理等问题。所谓单片机,就是把中央处理器CPUCentral Processing Unit、随机存取存储器RAMRandom Access Memory、只读存储器ROMRead Only Memo

6、ry、定时器/计数器以及I/OInput/Output接口电路等主要计算机部件,继承在一块集成电路芯片上的微型计算机。单片机技术与传感与测量技术、信号与系统分析技术、电路设计技术、可编程逻辑应用技术、微机接口技术、数据库技术以及数据构造、计算机操作系统、汇编语言程序设计、高级语言程序设计、软件工程、数据网络通信、数字信号处理、自动控制、误差分析、仪器仪表构造设计和制造工艺等的结合,使得单片机的应用非常广泛。同时,单片机具有较强的管理功能。采用单片机对整个测量电路进展管理和控制,使得整个系统智能化、功耗低、使用电子元件较少、部配线少、本钱低,制造、安装、调试及维修方便。本设计就是基于单片机80C

7、196KB设计的功率因数补偿装置。补偿器的控制芯片采用MCS-96系列单片机80C196KB;A/D转换采用12位的高性能A/D转换器MA*197;通过MOC3083来控制晶闸管的过零触发导通,从而投切电容器;并用时钟芯片DS12887来记录时间并具有掉电保护的功能。 1.1 CPU芯片的选择与应用在本装置中采用的CPU芯片为80C196KB,它是Intel公司MCS-96系列中应用最广泛的一种16位单片机,它具有高速处理功能及低功耗等特点。12MHz晶振时,16位加法指令只用0.66us,其根本指令的执行时间为0.5us-1.5us,指令的8098的超集,即8098指令的80C196KB全部

8、可以使用。1.80C196KB单片机的特点及外围特点1)80C196KB单片机除了保存8098的根本功能外,还具有以下特点:局部频电路为2分频而不是3分频,使处理能力提高1.5倍;指令速度更快,特别对变址/间址数据操作;对12MHz时钟,16*16位乘法仅需2.33us,而在8097BH上则需6.25us;更快的中断响应时间(几乎是8098的2倍);低功率和空闲的工作方式;包括长字比较和块传送的6种新指令;8种新中断向量16种新中断源。2)80C196KB单片机的外围特点特殊功能存放器窗口开关允许向只读存放器中写入数据:定时器2TIME2可由外部选择为向上或向下计数;定时器2TIME2使用独立

9、的捕捉存放器;高速输出HSO事件存入一个存放器中;高速输出HSO可使用CAM清楚和CAM LOCK命令;串行口可使用新波特率,所以方式都可用高速传输12MHz晶振时到达3.0MV/S;双缓冲串行口发送存放器;串行口承受溢出和错误检测;PWM使用2分频脉冲计数器;HOLD/HLDA总线规约;8路10位A/D转换器,A/D转换时间为14.67us。鉴于以上特点能够从硬件上缩短快速傅立叶变换的运算时间,保证电量测量的实时性。2.80C196KB单片机的主要引脚功能下面介绍个引脚功能: VCC:主电源+5V; VSS:数字电路地(0V),两个Vss引脚都应接地; CDE:时钟检测使能,为高使能时钟故障

10、检测电路,假设*TAL1频率低于指定的限度,则RESET脚变低; VREF:片转换器的参考电压(+5V),同时也为A/D转换器模拟局部和读0号口的电路提供电源,因而必须与0号口和A/D相连,要求VREF的稳压精度高于VCC; ANGND:A/D转换器的参考地.一般情况下必须和VSS同电位; VPP:从低功率电路返回的定时管脚,将该脚通过一个1uF的电容连到Vss,通过1个1M 欧姆的电阻连到Vcc,假设不使用该功能,可把Vpp连到VCC,该引脚也为片RPROM的编程电压,编程时,接12.75V电压; *TAL1:晶振反向器和部时钟发生器的输入; *TAL2:晶振反向器的输出端; CLKOUT:

11、部时钟发生器的输出.CLKOUT的频率是二分之一的晶振频率,占空比为50%;如图4.1所示为80C196KB单片机的引脚图32313023222120196313713416516676638333942441517189810114756P1.7 AD8 P1.6 AD9P1.5 AD10P1.4 AD11P1.3 AD12 P1.2 AD13 P1.1 AD14P1.0 AD15 INST VCC AD0VPP AD1VREF AD2BHEWRH AD3CLOCK AD4RESET AD5 AD6*TAL1 AD7*TAL2 NMIP2.7 BUSHIDTHP2.6 VSSP2.5 VSS

12、P2.4 VSSP2.3 ANGNDP2.2 EAP2.1 P2.0 RD WRP0.7 ALEP0.6 READYP0.5 P0.4 HSO.3P0.3 HSO.2P0.2 HSO.1P0.1 HSO.0P0.0 HIS.3 HIS.2 HIS.1 HIS.0 52515049484746456059585756555453364143654122614062433534292827262524图4.1 80C196KB的引脚图:芯片的复位输入.为复位芯片,该输入应保持为低至少4个状态时间,随后的低->高的转换与CLKOUT重新同步,启动一个10个状态时间的序列,在读序列里,将去除PS

13、W,从2021H单元读一个字节加载CCR,跳转到2080H单元执行,正常情况下输入为高,RESET有一个部上拉能力;BUSWIDTH:总线宽度选择输入端,假设CCR.1=1,该脚为当前总线周期选择总线宽度,当BUSWIDTH=1时,选择一个16位总线周期,假设BUSWIDTH=0则选择8位总线周期,假设CCR.1=0,总线周期总是8位;MNI:不可屏避中断.当次引脚有一个正跳变时,形成一个志向外部存储器203EH单元的中断向量;INST:在外部存储器读期间输出高,指定这是一个取指令读,输出低指出是一个数据读,INST在真个周期有效,仅在外部存储器存取时激活INST;:存储器选择输入端(外部存取

14、).当=TTL,且为高时将引起读芯片上ROM/EPROM的20003FFFH单元,低将引起读芯片外存储器的这些单元;ALE:地址锁存允许;:对外部存储器的读信号;:写外部存储器;HIS:高速输入信号端,具有4个HIS输入引脚:HIS.0,HIS.1,HIS.2和HIS.3,两个引脚(HIS.2和HIS.3)与HSO部件共用.这些引脚可用于RPROM型的编程;HSO:高速输出不见的输出端;P0口:8位高阻抗输入口.这些引脚可作为数字输入口,也可作为A/D转换器的模拟输入口;P1口:8位准双向口;P2口:8位多功能口,它们除了可作为标准I/O口外,还可用作其它特殊功能;P3,P4口:具有漏极开路输

15、出的8位多功能口,这些引脚也可用作地址/数据总线,它们具有很强的上拉作用。3.80C196KB单片机的时钟信号1)片震荡器80C196KB的片震荡器电路包含一个晶体控制的正电抗振荡器,如图4.2所示。它与外部晶体的连接方法见图4.3。*TAL1脚是部反向放大器的输入端,而*TAL2脚是该放大器的输出端。在晶体振荡器中,晶体工作于根本响应模式,它作为一个感抗与外部电容形成并联谐振,使正反响放大器维持震荡。振荡器的工作受PD信号掉点方式位的控制。当PD=0时,图4.2中下面一个N型沟道MOS管处于截止状态,使振荡器停振。 VCC 至内部电路*TAL1 Rf *TAL2 PD VSS图4.2片振荡器

16、电路至内部电路 Rf 80C196KB*TAL1 *TAL2 石英晶体或陶瓷谐振器 20Pf 20pf VSS图4.3 外部晶体连接法*TAL1和*TAL2引脚处都有静电放电保护器件图中未示出。如图4.3所示的外接电容值并不十分严格。20pF对于工作于1MHz以上的质量较好的晶体都能获得良好的效果。2)部时序80C196KB的状态周期由振荡器信号2分频后获得,它是芯片工作的根本时间单位。当采用12MHz晶振时,80C196KB的状态周期为167ns;采用8MHz晶振时,80C196KB的状态周期为250ns,恰与8096芯片采用12MHz晶振时 状态周期一样。因此,采用一样频率的晶振工作时,8

17、0C196KB的操作速度至少比8096的速度高1/3。80C196KB的速度比8096高的另一个因素是,前者的大局部指令执行状态周期数略比后者的少。节拍1节拍2CLKOUT图4.4 部时钟节拍时钟发生器产生的2个不重叠的部节拍,如图4.4所示。CLKOUT信号由节拍1和节拍2的上升沿形成。1.2 EPROM 272561.芯片介绍EPROM作为一种可以屡次擦除和重写的ROM,抑制了掩膜式ROM和EPROM灵活性差的缺点,故本设计中采用27256作为程序存储器。27256是Intel公司采用HMOS工艺生产的。它是用5V供电、262144位紫外线可擦除、可电编程的只读存储器EPROM。构造是32

18、K×8位,单个字节的存取时间小于200ns。其双线控制和JEDEC批准的28引脚封装,是所有的Inetl公司高密度EPROM的标准特性,保证它易与高性能的微处理器兼容。27256具有32K字节的大存储容量,使它具有高密度软件载体的功能。全部操作系统、诊断、高级语言程序和专用软件,直接可驻留在系统存储器总线上的一片27256 RPROM中,这就使得微处理器能立即存取和执行软件,节约了磁盘存取和卸载所需时间。2.EPROM 27256单片机的主要引脚功能如图4.5所示为EPROM 27256的引脚图1234567891011121314VPP VCCA12 A14A7 A13A6 A8A

19、5 A9A4 A11A3 OEA2 A10A1 CEA0 D7D0 D6D1 D5D2 D4GND D32827262524232221201918171615图4.5 EPROM 27256的引脚图引脚功能VCC:主电源+5V;VPP:掉点保护电压;A0A14:地址输入;CE:片选;OE:输出允许控制端;O0O7:数据输出;4.3A/D转换芯片的选择单片机应用的重要领域是自动控制。在自动控制领域的应用中,除数字量之外还会遇到另一种物理量,即模拟量。例如:温度、速度、电压、电流等,它们都连续变化的物理量。由于计算机只能处理数字量,因此计算机系统中凡遇到有模拟量的地方就要进展数模、模数转换,也就

20、出现了单片机的数/模和模/数转换的接口问题。现在这些转换器都已集成化,并具有体积小、功能强、可靠性高、误差小、功耗低等特点,能很方便地与单片机进展接口。A/D转换器输入的是模拟量,经转换后输出的是数字量。1.芯片介绍对一个数据采集系统而言,我们可以有假设干个方案。每中方案虽然都能到达所期望的结果,但对数据采集系统的精度、性能和可靠性提出了较高的要求时就需要有一种最可行的方案。速度采样速度由模拟信号带宽、数据通道数和每个周期的采样数决定。A/D转换电路是数据采集系统的核心局部。所以选择适宜的A/D转换器件是很重要的。MA*IM公司为我们在选择上解决了这一问题。他们设计出了将采集系统所需的程控运放

21、、通道切换、基准源、时钟电路、A/D和电源管理单元集成在单个芯片上的MA*197多量程可程控并采用单一+5V电源供电的12位A/D转换数据采集系统。MA*197是一个多量程、12位数据采集系统。该芯片只需单一的+5V电源供电即可工作。但在其模拟输入端可以承受大幅度膏腴电源电压和低于地的信号。其允许最大幅值可达+16.5V且当任一通道发生故障后将不影响其他通道的正常操作。该芯片提供8个模拟输入通道,每一通道均可独立地由软件编程得到多种输入围:+10V、+5V、010V或05V。这是的其有效的动态围增加到14位。并使用户能灵活地把420mA及+12V和+15V电源的检测器很方便的与单一的+5V系统

22、相接口。该器件的其它特点还包括具有50Hz带宽的跟踪/保持电路,100Ksps的采样速率,软件可选的部或外部时钟,可变的采集控制,8+4位并行接口,以及置4.096V电压基准或可选的外部基准源。MA*197使用标准的微处理器接口单元,三态数据I/O端口配置成与8位数据总线一起工作。数据存取和总线释放的时序性能指标与大多数通用的微处理器相兼容,所有逻辑输入与输出均是TTL/CMOS 兼容的。在电源管理方面,该器件还提供硬件上的SHDN引脚和可编程的掉电方式STBYPD、FULLPD,使芯片在两次变换之间能处于低电流的关端状态。在STBYPD方式下,基缓冲器仍保持有效,从而消除了电延迟。2.MA*

23、197主要特性:1)12位分辨率,1/2LSB线性度2)+5V单电源工作3)软件可选输入围:+10V、+5V、010V或05V4)带鼓掌保护输入多路转换器+16.5V5)8路模拟输入通道6)6us变换时间,100Ksps采样速率7)部或外部采样控制8)置4.096V9)两种掉电保护10)部或外部时钟3.MA*197的引脚说明1)如图4.6所示为MA*197的引脚图D7 CSD6 CLKD5 REFD3/D11 INTD2/D10 CH7D1/D9 CH6D0/D8 CH5HBEN CH4RD CH3WR CH2VDD CH1SHEN CH0REFADJAGNDDGND2126242322212

24、019181716789101112131443276251528图4.6 MA*197引脚图2)下面介绍个引脚功能:CLK引脚1:时钟输入,在外部适中方式下,用与TTL/CMOS 电平兼容的时钟信号来驱动CLK,在部时钟方式下,在此引脚与地之间接一电容以设置部时钟频率,当CCLK=100pF时,FCLK典型值=1.56MHz;引脚2:片选端,低电平有效;引脚3:写控制输入,假设为低电平时,上升沿锁存承受的数据并启动采集和变换周期。在外部采集方式下,当为低电平时,的第一个上升沿启动采集,的第二个上升沿完毕采集系统并开场一个变换周期;引脚4:读控制输入,假设为低电平时,的下降沿将允许数据总线上的

25、读操作;HBNE 引脚5:高字节允许信号,用于转接12位变换结果,当它为高电平时,D8D11 4个MSB最高有效位接至数据总线,当它为低电平时,D0D7 8个LSB最低有效位接至数据总线;引脚6:关断控制。当此引脚为低电平时,器件进入完全掉电FULLPD方式;D7D4引脚710:三态数字I/O;D3D0/ D11D8引脚1114:三态数字I/O。由HBEN引脚低电平控制,当HBEN引脚为低电平时,选择D3D0当;当HBEN引脚为高电平时,选择D11D8;CH0CH7引脚1623:8路模拟输入通道;引脚24:输出数据准备好。当变换完成时,该引脚变为低电平,此信号可用作中断请求信号;REFADJ引

26、脚25:带隙Bandgap电压基准输出/外部调整引脚,用0.01uF电容器旁路到AGND。当REF 引脚使用外部基准源时,连接到VDD;REF引脚26:基准缓冲器输出/ADC基准输入。在部基准方式下,基准缓冲器提供4.096V的额定输出,其值是REFADJ引脚外部可调的。在外部基准方式下,通过把REFADJ引脚连接到VDD来制止部缓冲器;VDD引脚247:+5V电源。用0. 1uF电容器旁路到AGND;AAGND引脚15:模拟地;AGND引脚28:数字地。4.MA*197 的工作原理MA*197是美国MA*IM公司向市场推出的12位快速A/D转换器,它采用28引脚双列直插式标准封装,无需外接元

27、器件就可以独立完成A/D转换功能,可将一个模拟信号转换为12位数字输出。MA*197可分为部采样模式和外部采样模式。采样模式由控制存放器的D5位决定,在部采样控制模式控制位置0,由写脉冲启动采样间隔,经过6个时钟周期的采样间隔,开场A/D转换。在外部采样模式D5=1,由两个写脉冲分别控制采样和AD转换。第一个写脉冲,写入ACQMOD为1,开场采样间隔;第二个写脉冲,写入控制字AOD为0,MA*197停顿采样,开场A/D转换。MA*197的逻辑控制输入信号有HBEN、。、控制读写操作。是片选端,是控制芯片启动的输入端。当为低电平时,选中MA*197的D0D7口作为数据线。当为高电平时,不能进展写

28、操作,极口变为高阻状态,此时可控制字节送如D0D7口。控制字格式如表4.1所示。表4.1 DOD7口控制字D7D6D5D4D3D2D1D0PD1PD0ACQMOD RNGBIPA2A1A0PD1、PD0用于选择时钟模式和节电模式:00表示外部时钟,即用户在CLK引脚端输入100K200MHz,占空比为45-55%的方波信号;01表示部时钟;10表示闲置STBPD节电模式,每次A/D转换后自动进入节电模式,直到下一次A/D转换后,不带任何延时的响应转换命令;11表示完全FULLPD节电模式,当通过率高于1Ksps时,应在下次转换前执行一次闲置节电模式,当通过率低于1Ksps时,就不必执行上操作,

29、直接写控制字。ACQMOD用于选择外采样模式:ACQMOD为0,部采样模式;ACQMOD为1,外部采样模式。RNG、BIP决定量程:00表示05V,01表示010V,10表示55V,11表示1010V。A0、A 1、A 2决定输入的通道号。当A/D转换完毕时,12位数据已经准备好,则INT跳转为低电平,向单片机申请中断,从MA*197的I/O口读取A/D转换结果。读取数据时,CS与RD同时为低电平,当HBEN的低电平时,读低8位数据,当HBEN的高电平时,读高4位数据。5.MA*197在设计当中的应用由于MA*197是多量程,有裕度的ADC,它使用逐次逼近和部输入跟踪/保持电路包模拟信号变成1

30、2位的数字输入,且并行的格式易与微处理器接口。因而单个芯片就可以构成一个完整的数据采集系统,使它非常适用与自动测试、仪器仪表等领域。如图4.7所示为MA*197在本设计中的连接方法:AD7 7AD6 8AD5 9AD4 10AD3 11AD2 12AD1 13AD0 14A9 5RD 4WR 3 2762515282 Y31 100pf26242322212019 IVGB18 IVGA17 VVGB16 VVGAD7 CSD6 CLKD5 REFD3/D11 INTD2/D10 CH7D1/D9 CH6D0/D8 CH5HBEN CH4RD CH3WR CH2VDD CH1SHEN CH0R

31、EFADJAGNDDGND987654321REP8BVCCC2 C30.1uf图4.7 MA*197外围电路图在该电路中,在CLK引脚与地之间接一个100pf的小电容以设置部时钟频率,这时,fCLK 典型值=1.56MHz。CH0CH3引脚承受电压电流互感器川来的模拟信号,、实现芯片的读写功能,REFADJ引脚用0.01uF电容器旁路到AGND,D0D7引脚和单片机的AD0AD7引脚相接,可以把转换后的数字信号传送给80C196KB,以便对数据进展处理。其中引脚接收GAL16V8传送来的地址译码信号,其地址空间是8800H8BFFH。4.4液晶显示模块LCD1.液晶显示模块LCD的介绍本设计

32、中选用的是MDLS204612型显示液晶模块。该显示模块可显示20列×4行。因其具有体积小、供耗低、显示信息量大的特点,特别是它能显示汉字、曲线及各种图形。因而广泛应用于各种智能化仪器仪表及计算机应用系统中。2.液晶显示模块LCD的特点LCD主要有以下特点:5V单电源供电。具有80个单元的显示RAM具有字符发生器ROM,可显示192中字符具有64个单元的自定义字符RAM92种字符模块构造紧凑、轻巧、装配容易;供耗低、寿命长、可靠性高。3.LCD的引脚说明1)如图4.8所示为LCD的引脚图DB7 EDB6 R/WDB5 RSDB4 VDDDB3 DB2 VODB1DB0 VSS6542

33、311413121110987图4.8 LCD的引脚排列2)下面介绍个引脚功能VSS:电源地;VDD:+5V逻辑电源;V0:液晶驱动电源;RS:输入状态,存放器选择功能:1为数据,0为指令;R/W:输入状态,读、写操作选择:1为读,0为写;E:输入状态,使能信号;DB0:三态数据总线LSB;DB1DB6:三态数据总线;DB7:三态数据总线MSB;5.MDLS系列LCD的指令集MDLS系列LCD指令系统共有11条,如同一个可编程接口芯片,用户只需对模块写入适当的命令,便可完成清屏、显示、开关光标、地址设置、移动显示、读忙等一系列操作。表4.2 清屏RS R/WDB7 DB6 DB5 DB4 DB

34、3 DB2 DB1 DB00 0 0 0 0 0 0 0 0 1运行时间250KHz:1.64ms;功能:清DDRAM和AC值。如下表4.2所示。表4.3 归位RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 00 0 0 0 0 0 1 *运行时间250KHz:1.64ms;功能: AC=0,光标、画面回HOME位。如表4.3所示。表4.4 输入方式设置RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 00 0 0 0 0 1 I/D S运行时间250KHz:40us;功能: AC=0,光标、画面移动方式;如表4.4所示。其中:I/D=

35、1:数据读、写操作后,AC自动增一;I/D=0:数据读、写操作后,AC自动减一; S=1:数据读、写操作后,画面平移; S=0:数据读、写操作后,画面不动。表4.5显示开关控制RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 00 0 0 0 1 D C B运行时间250KHz:40us;功能: 设置显示、光标及闪烁开、关;如表4.5所示。其中:D表示显示开关:D=1为开,D=0为关; C表示光标开关:C=1为开,C=0为关; B表示闪烁开关:C=1为开,C=0为关。表4.6 光标、画面位移RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00

36、 0 0 0 0 1 S/C R/L * *运行时间250KHz:40us;功能:光标、画面移动,不影响DDRAM;如表4.6所示。其中:S/C =1,画面平移一个字符位; S/C =0,光标平移一个字符位;R/L=1:右移; R/L=0:左移;表4.7 功能设置RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 00 0 1 D/L N F * *运行时间250KHz:40us;功能:工作方式设置初始化指令;如表4.7所示。其中:DL=1,8位数据接口;DL=0,4位数据接口;N=1,两行显示, N=1,一行显示F=1,5×10点字符,F=0,5×

37、;7点字符。表4.8 CGRAM地址设置RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 00 1 A5 A4 A3 A2 A1 A0运行时间250KHz:40us;功能:设置CGRAM地址。A5A1=03FH。如表4.8所示。表4.9 DDRAM地址设置RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 01 A6 A5 A4 A3 A2 A1 A0运行时间250KHz:40us;功能:设置DDRAM地址。如表4.9所示。N=0,一行显示A6A0=04FH;N=1,二行显示,首行A6A0=00H2FH; 次行A6A0=40H67H。表4.

38、10 读BF及AC值RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB00 1BF AC6 AC5 AC4 AC3 AC2 AC1 AC0功能:读BF值和地址计数器AC值;其中:BF=1,忙;BF=0,准备好;此时,AC值意义为最近一次地址设置CGRAM或DDRAM定义。如表4.10所示。表4.11 写数据RS R/WDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB01 0数 据运行时间250KHz:40us;功能:根据最近设置地址性质,数据写入DDRAM或CGRAM。如表4.11所示。表4.12 读数据RS R/WDB7 DB6 DB5 DB4 DB3 DB

39、2 DB1 DB01 1数 据运行时间250KHz:40us;功能:根据最近设置地址性质,从DDRAM或CGRAM数据读出。如表4.12所示。6 Y25 A04 A1231AD7 14AD6 13AD5 12AD4 11AD3 10AD2 9AD1 8AD0 7DB7 EDB6 R/WDB5 RSDB4 VDDDB3 DB2 VODB1DB0 VSSVCC R2 10KR110K如图4.9所示为LCD外围电路图图4.9 LCD外围电路图为LCD在本电路中的接法。其中,VCC接+5V电源,在该电路中,其DB0DB7引脚和74HC245的B0B7引脚相接,同时也与外部数据存储器相连,当它承受到CP

40、U发出的显示命令的时候,就把从数据存储器传来的数据在液晶显示模块上显示出来,用RS和R/W来设置LCD的工作模式,在本次设计中设定:2行、8位、5*7点阵显示,容自动加1,全屏右移,开显示,但是不显示光标。E引脚承受GAL16V8传送的译码信号,其地址围是8400H87FFH。4.5时钟芯片1.芯片介绍在自动测控系统中,特别是长时间无人值守的测控系统中,经常需要进展长达几小时的定时操作。假设采用单片机计时,一方面需要采用计数器,占用硬件资源,另一方面需要设置中断、查询等,同样消耗单片机的资源,而且*些测控系统可能不允许。而在系统中采用DS12C887则正好满足上述要求。DS12887是美国达拉

41、斯半导体公司Dallas生产的并行接口实时时钟日历芯片,它置晶振和锂电池,外围接口简单,具有精度高,工作稳定可靠等优点,可广泛应用于各种需要较高精度的实时时钟系统。2.DS12887的主要特性DS12887 实时时钟日历芯片采用CMOS技术制成,该芯片带有部晶体振荡器并置有锂电池,因此断电后仍可运行十年以上且不丧失数据。同时具有计秒、分、时、星期、日、月、年,并有闰年补偿功能。时间、日历和定闹具有二进制码和BCD码两种形式,并可设定12小时或24小时制式以及Motorola和Intel总线时序。DS12887含128字节RAM,其中有10个时钟存放器、4个控制存放器和114字节通用RAM,所有

42、RAM单元都具有掉电保护功能,因此可被用作非易失性RAM。 DS12887部具有定闹中断、周期性中断、时钟更新周期完毕中断等,且三个中断源可分别由软件屏蔽。3.原理及管脚说明DS12887部由震荡电路,分频电路,周期中断/方波选择电路组成。 DS12C887部的存储器分配如下:共有128字节RAM空间,其中:15字节用于时间和控制存放器,113字节用于普通用途00H09H存储的是时间和年月日以及闹钟设定的时间;0AH0CH是四个设置存放器,用来设定DS12C887的工作状态;32H用来存储世纪数据;其他的存放器可以提供给用户自由使用。1)如图4.10所示为DS12C887的引脚图AD7 VCC

43、AD6AD5AD4AD3AD2AD1 SQWAD0IQR RESETR/W NCDS NCCS NCAS NCMOT NCGND NC1110987654191517131411224232316202122图4.10 DS12C887的引脚图2)下面介绍个引脚功能:GND、VCC:直流电源+5V电压。当5V电压在正常围时,数据可读写;当VCC低于4.25V时,读写被制止,计时功能仍继续;当VCC下降到3V以下时,RAM和计时器供电被切换到部锂电池;MOT模式选择:MOT管脚接到VCC时,选择Motorola时序,当接到GND时,选择 Intel时序;SQW方波输出信号:SQW管脚能从实时时钟

44、部15级分频器的13个抽头中选择一个作为输出信号,其输出频率可通过对存放器A编程改变。AD0AD7双向地址/数据复用线:总线接口,可与Motorola微机系列和 Intel微机系列接口;AS地址选通输入:用于实现信号别离,在AD/ALE的下降沿把地址锁入DS12887;DS数据选通或读输入:DS/RD管脚有两种操作模式,取决于MOT管脚的电压选择,当使用Motorola时序时,DS是一正脉冲,出现在总线周期的后段,称为数据选通;在读周期,DS指示DS12887驱动双向总线的时刻;在写周期,DS的后沿使DS12887锁存写数据。选择 Intel时序时,DS称作RD,RD与典型存储器的允许信号OE

45、的定义一样;R/读/写输入:R/W管脚也有两种操作模式。选Motorola时序时,R/的低电平信号,指示当前周期是读或写周期,DS 为高电平时,R/高电平知识读周期,R/信号是一低电平,成为WR。在次模式下,R/管脚与通用RAM的写允许信号WE的含义一样;片选输入:在DS12887的总线周期,片选信号必须保持为低;中断申请输入:低电平有效,可做微处理的中断输入,没有中断的条件满足时,IRQ处于高阻态。线是漏极开中输入,要求外接上接电阻;复位输出:当该脚保持低电平时间大于200ms,保证DS12887有效复位。4.部功能1)地址分配图如图4.11所示。DS12887地址由114字节的用户RAM、

46、10字节的存放实时时钟时间、日历和定闹RAM及用于控制和状态的4字节特殊存放器组成。几乎所有的128个字节可直接读写。2)非易失RAM在DS12887中,114字节通用非易失RAM不专用于任何特殊功能,它们可被处理器程序用作非易失存,。在更新周期也可。3)中断 RTC实时时钟加RAM向处理器提供三个独立的、自动的中断源。定闹中断的发生率可编程,从每秒一次到每天一次,周期性中断的发生率可从500ms到122µs选择。更新完毕中断用于向程序指示一个更新周期完成。4)晶振控制位    DS12887出厂时,其部晶振被关掉,以防止锂电池在芯片装入系统前被消耗。存

47、放器A的BIT4BIT6为010时翻开晶振,分频链复位,BIT4BIT6的其它组合都是使晶振关闭。5)方波输出选择15级分步抽着中的13个可用于15选1选择器,选择分频器抽头的目的是在SQW管脚产生一个方波信号,其频率由存放器A的RS0RS3位设置。SQW频率选择与周期中断发生器共离15选1选择器,一旦频率选择好,通过用程序控制方波输出允许位SWQE来控制SQW管脚输出的开关。6)周期中断选择    周期中断可在脚产生500ms一次到每122µs一次的中断,中断频率同样由存放A确定,它的控制位为存放器B中的PIE位。7)更新周期DS12887每秒执行一次

48、更新周期还比较每一定闹字节与相应的时间字节,如果匹配或三个字节都是不关心码,则产生一次定闹中断。 5.状态控制存放器DS12887有4个控制存放器,它们在任何时间都可,即使更新周期也不例外。1)存放器AUIP:更新周期正在进展位。当UIP为1,更新转换将很快发生,当UIP为0,更新转换至少在244µs不会发生。DV0,DV1,DV2:用于开关晶振和复位分频链。这些位的010唯一组合将翻开晶振并允许RTC计时。RS3,RS2,RS1, RS0:频率选择位,从15级频率器13个抽头中选一个,或制止分频器输入,选择好的抽头用于产生方波(SQW管脚)输出和周期中断,用户可以:(1)用PIE位

49、允许中断;(2)用SQWE位允许SQAW输出并一样的频率;    2)存放器BSET:SET为0,时间更新正常进展,每秒计数走时一次,当SET位写入1,时间更新被制止,程序可初始化时间和日历字节。    PIE:周期中断劲旅位,PIE为1,则允许以选定的频率拉低IRQ管脚,产和缺乏齿数民:PIE为0,则制止中断。    AIE:定闹中断允许位,PIE为1,允许中断,否则制止中断。    SQWE:方波允许位,置1选定频率方波从SQW脚输出;为0时,SQW脚为低。    DM:数据模式位,DM为1表示为十进制数据,而0说明是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论