版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上习题1图1.7 七桥问题北区东区岛区南区1. 图论诞生于七桥问题。出生于瑞士的伟大数学家欧拉(Leonhard Euler,17071783)提出并解决了该问题。七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。请将该问题的数据模型抽象出来,并判断此问题是否有解。 七桥问题属于一笔画问题。 输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点
2、都是偶点。另一类是只有二个奇点的图形。2在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m 3设计算法求数组中相差最小的两个元素(称为最接近数)的差。要求分别给出伪代码和C+描述。/采用分治法/对数组先进行快速排序/在依次比较相邻的差#include <iostream>using namespace std;int partions(int b,
3、int low,int high)int prvotkey=blow;b0=blow;while (low<high) while (low<high&&bhigh>=prvotkey) -high; blow=bhigh; while (low<high&&blow<=prvotkey) +low; bhigh=blow;blow=b0;return low;void qsort(int l,int low,int high)int prvotloc;if(low<high) prvotloc=partions(l,low,
4、high); /将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); /递归调用排序 由low 到prvotloc-1 qsort(l,prvotloc+1,high); /递归调用排序 由 prvotloc+1到 highvoid quicksort(int l,int n)qsort(l,1,n); /第一个作为枢轴 ,从第一个排到第n个int main()int a11=0,2,32,43,23,45,36,57,14,27,39;int value=0;/将最小差的值赋值给valuefor (int b=1;b<11;b+)cout<<ab&l
5、t;<' 'cout<<endl;quicksort(a,11);for(int i=0;i!=9;+i) if( (ai+1-ai)<=(ai+2-ai+1) ) value=ai+1-ai; else value=ai+2-ai+1;cout<<value<<endl;return 0;4 设数组an中的元素均不相等,设计算法找出an中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。要求分别给出伪代码和C+描述。#include<iostream>using namespace std; int mai
6、n() int a=1,2,3,6,4,9,0; int mid_value=0;/将“既不是最大也不是最小的元素”的值赋值给它 for(int i=0;i!=4;+i) if(ai+1>ai&&ai+1<ai+2) mid_value=ai+1; cout<<mid_value<<endl;break;else if(ai+1<ai&&ai+1>ai+2) mid_value=ai+1;cout<<mid_value<<endl;break; /for return 0;5. 编写程序,求
7、n至少为多大时,n个“1”组成的整数能被2013整除。#include<iostream>using namespace std;int main() double value=0; for(int n=1;n<=10000 ;+n) value=value*10+1; if(value%2013=0) cout<<"n至少为:"<<n<<endl; break; /for return 0;6. 计算值的问题能精确求解吗?编写程序,求解满足给定精度要求的值#include <iostream>using n
8、amespace std;int main () double a,b; double arctan(double x);/声明a = 16.0*arctan(1/5.0); b = 4.0*arctan(1/239); cout << "PI=" << a-b << endl;return 0;double arctan(double x) int i=0; double r=0,e,f,sqr;/定义四个变量初 sqr = x*x;e = x;while (e/i>1e-15)/定义精度范围 f = e/i;/f是每次r需要叠加
9、的方程 r = (i%4=1)?r+f:r-f; e = e*sqr;/e每次乘于x的平方 i+=2;/i每次加2 /while return r;7. 圣经上说:神6天创造天地万有,第7日安歇。为什么是6天呢?任何一个自然数的因数中都有1和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。例如,6=1+2+3,因此6是完美数。神6天创造世界,暗示着该创造是完美的。设计算法,判断给定的自然数是否是完美数#include<iostream>using namespace std;int main() int value, k=
10、1; cin>>value; for (int i = 2;i!=value;+i) while (value % i = 0 ) k+=i;/k为该自然数所有因子之和 value = value/ i;/for if(k=value) cout<<"该自然数是完美数"<<endl; else cout<<"该自然数不是完美数"<<endl;return 0;8. 有4个人打算过桥,这个桥每次最多只能有两个人同时通过。他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。这
11、就意味着两个人过桥后必须有一个人将手电筒带回来。每个人走路的速度是不同的:甲过桥要用1分钟,乙过桥要用2分钟,丙过桥要用5分钟,丁过桥要用10分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间?由于甲过桥时间最短,那么每次传递手电的工作应有甲完成甲每次分别带着乙丙丁过桥例如:第一趟:甲,乙过桥且甲回来第二趟:甲,丙过桥且甲回来第一趟:甲,丁过桥一共用时19小时9欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行动时,当前玩家都必须在白板上写出任意两个已经出现在板上的数字的差,而且这个数字必须是新的,也就是说,和白板上的任何一个已
12、有的数字都不相同,当一方再也写不出新数字时,他就输了。请问,你是选择先行动还是后行动?为什么?设最初两个数较大的为a, 较小的为b,两个数的最大公约数为factor。则最终能出现的数包括: factor, factor*2, factor*3, ., factor*(a/factor)=a. 一共a/factor个。如果a/factor 是奇数,就选择先行动;否则就后行动。习题41. 分治法的时间性能与直接计算最小问题的时间、合并子问题解的时间以及子问题的个数有关,试说明这几个参数与分治法时间复杂性之间的关系。2. 证明:如果分治法的合并可以在线性时间内完成,则当子问题的规模之和小于原问题的规
13、模时,算法的时间复杂性可达到O(n)。O(N)=2*O(N/2)+xO(N)+x=2*O(N/2)+2*xa*O(N)+x=a*(2*O(N/2)+x)+x=2*a *O(N/2)+(a+1)*x由此可知,时间复杂度可达到O(n);3.分治策略一定导致递归吗?如果是,请解释原因。如果不是,给出一个不包含递归的分治例子,并阐述这种分治和包含递归的分治的主要不同。不一定导致递归。如非递归的二叉树中序遍历。 这种分治方法与递归的二叉树中序遍历主要区别是:应用了栈这个数据结构。4. 对于待排序序列(5, 3, 1, 9),分别画出归并排序和快速排序的递归运行轨迹。 归并排序: 第一趟:(5,3)(1,
14、9);第二趟:(3,5,1,9);第三趟:(1,3,5,9);快速排序: 第一趟:5( ,3,1,9);/5为哨兵,比较9和5 第二趟:5(1,3, ,9);/比较1和5,将1挪到相应位置; 第三趟:5(1,3, ,9);/比较3和5; 第四趟:(1,3,5,9); 5. 设计分治算法求一个数组中的最大元素,并分析时间性能。/简单的分治问题/将数组均衡的分为“前”,“后”两部分/分别求出这两部分最大值,然后再比较这两个最大值#include<iostream>using namespace std;extern const int n=6;/声明int main()int an=0
15、,6,1,2,3,5;/初始化int mid=n/2;int num_max1=0,num_max2=0;for(int i=0;i<=n/2;+i)/前半部分 if(ai>num_max1) num_max1=ai;for(int j=n/2+1;j<n;+j)/后半部分if(aj>num_max2) num_max2=aj;if(num_max1>=num_max2)cout<<"数组中的最大元素: "<<num_max1<<endl;else cout<<"数组中的最大元素: &q
16、uot;<<num_max2<<endl;return 0;时间复杂度:O(n)6. 设计分治算法,实现将数组An中所有元素循环左移k个位置, 要求时间复杂性为O(n),空间复杂性为O(1)。例如,对abcdefgh循环左移3位得到defghabc。 /采用分治法/将数组分为0-k-1和k-n-1两块/将这两块分别左移/然后再合并左移#include <iostream>using namespace std;void LeftReverse(char *a, int begin, int end)for(int i=0;i<(end-begin+1)
17、/2;i+)/交换移动int temp=abegin+i;abegin+i=aend-i;aend-i=temp;void Converse(char *a,int n,int k) LeftReverse(a, 0, k-1);LeftReverse(a, k, n-1);LeftReverse(a, 0, n-1);for(int i=0;i<n;i+)cout<<ai<<" "cout<<endl;int main()char a7='a','b','c','d'
18、,'e','f','g'Converse(a,7,3);return 0;7. 设计递归算法生成n个元素的所有排列对象。#include <iostream>using namespace std;int data100;/在m个数中输出n个排列数(n<=m)void DPpl(int num,int m,int n,int depth) if(depth=n) for(int i=0;i<n;i+) cout<<datai<<" " cout<<endl; for(
19、int j=0;j<m;j+) if(num&(1<<j)=0) datadepth=j+1; DPpl(num+(1<<j),m,n,depth+1); /forint main() DPpl(0,5,1,0); DPpl(0,5,2,0); DPpl(0,5,3,0);DPpl(0,5,4,0); DPpl(0,5,5,0); return 0;8. 设计分治算法求解一维空间上n个点的最近对问题。参见4.4.1最近对问题的算法分析及算法实现9. 在有序序列(r1, r2, , rn)中,存在序号i(1in),使得ri=i。请设计一个分治算法找到这个元素
20、,要求算法在最坏情况下的时间性能为O(log2n)。/在有序数组中/采用二分法查找符合条件的元素#include<iostream>using namespace std;void Findnum(int *a,int n) int low=0; int high=n-1; while(low<=high) int mid=(low+high)/2;if(amid=mid)cout<<"这个数是: "<<amid<<endl; break;else if(amid>mid)high=mid-1;elselow=mi
21、d+1; int main()int a7=1,0,2,5,6,7,9; Findnum(a,7);return 0;时间复杂度为O(log2n)。10. 在一个序列中出现次数最多的元素称为众数。请设计算法寻找众数并分析算法的时间复杂性。 /先对序列进行快速排序/再进行一次遍历/输出众数的重复次数#include <iostream>using namespace std;int partions(int b,int low,int high)int prvotkey=blow;b0=blow;while (low<high) while (low<high&&
22、amp;bhigh>=prvotkey) -high; blow=bhigh; while (low<high&&blow<=prvotkey) +low; bhigh=blow;blow=b0;return low;void qsort(int l,int low,int high)int prvotloc;if(low<high) prvotloc=partions(l,low,high); /将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); /递归调用排序 由low 到prvotloc-1 qsort(l,prvotlo
23、c+1,high); /递归调用排序 由 prvotloc+1到 highvoid quicksort(int l,int n)qsort(l,1,n); /第一个作为枢轴 ,从第一个排到第n个int main()int a10=1,2,3,5,3,3,3,2,5,1;int i=0;int count=0;int max=0;/max表示出现的次数qsort(a,0,10); while(i<10)int j;j=i+1; if(ai=aj&&i<10) count+; i+; if(count>max) max=count; count=0; /while
24、 cout<<"重复次数:"<<max<<endl; return 0;时间复杂度nlog(n)11. 设M是一个n×n的整数矩阵,其中每一行(从左到右)和每一列(从上到下)的元素都按升序排列。设计分治算法确定一个给定的整数x是否在M中,并分析算法的时间复杂性。 12. 设S是n(n为偶数)个不等的正整数的集合,要求将集合S划分为子集S1和S2,使得| S1|=| S2|=n/2,且两个子集元素之和的差达到最大。/先用快速排序进行一趟排序/如果s1(大的数集)的的个数大于n/2/将(i<=n/2-low-1)个最小的数排到
25、后面/如果s1(大的数集)的的个数小于n/2/将s2(小的数集)n/2-low-1排到前面/将排好的数组的前n/2个数赋值给s1/将排好的数组的后n/2个数赋值给s2#include<iostream>using namespace std;const int n=8;void partions(int a,int low,int high)/进行一趟快排int prvotkey=alow;a0=alow;while (low<high) while (low<high&&ahigh<=prvotkey) -high; alow=ahigh; wh
26、ile (low<high&&alow>=prvotkey) +low; ahigh=alow;alow=prvotkey;/如果s1(大的数集)的的个数大于n/2if(low>=n/2) for(int i=0;i<=n/2-low-1;+i) for(int j=0;j<n-i;+j) if(aj<aj+1)int temp=aj; aj=aj+1; aj+1=temp; /for /if/如果s1(大的数集)的的个数小于n/2else for(int i=0;i<=n/2-low-1;+i) for(int k=n-1;k<
27、n-i;+k) if(ak>ak-1)int temp1=ak; ak=ak-1; ak-1=temp1; /for int main()int an=1,3,5,9,6,0,-11,-8;partions(a,0,n-1);for(int i=0;i<n;+i) if(i<4) cout<<"属于子集s1的:"<<endl; cout<<ai<<endl; else cout<<"属于子集s2的:"<<endl; cout<<ai<<end
28、l; return 0;13. 设a1, a2, an是集合1, 2, , n的一个排列,如果i<j且ai>aj,则序偶(ai, aj)称为该排列的一个逆序。例如,2, 3, 1有两个逆序:(3, 1)和(2, 1)。设计算法统计给定排列中含有逆序的个数。/用归并进行排序/当一个子集的一个数大于第二个子集的一个数,为逆序,即ai>aj/则逆序数为end-j+1;#include<iostream>using namespace std;int count;void Merge(int a,int a1,int begin,int mid,int end)/合并子序
29、列 int i=begin,j=mid+1,k=end; while(i<=mid&&j<=end) if(ai<=aj) a1k+=ai+;/取ai和aj中较小者放入r1k else a1k+=aj+; count+=(end-j+1); while(i<=mid) a1k+=ai+; while(j<=end) a1k+=aj+;void MergeSort(int a , int begin, int end) int mid,a11000; if(begin=end) return ; else mid=(begin+end)/2; Mer
30、geSort(a,begin,mid); MergeSort(a,mid+1,end); Merge(a,a1,begin,mid,end); int main()int a6=6,5,4,3,2,1; count=0;MergeSort(a,0,6);cout<<count<<endl;return 0;14. 循环赛日程安排问题。设有n=2k个选手要进行网球循环赛,要求设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次。 采用分治方法。 将2k选手分为2k-1两组,采用递归方法,继续进行分组,直到只剩下2个选
31、手时,然后进行比赛,回溯就可以指定比赛日程表了15. 格雷码是一个长度为2n的序列,序列中无相同元素,且每个元素都是长度为n的二进制位串,相邻元素恰好只有1位不同。例如长度为23的格雷码为(000, 001, 011, 010, 110, 111, 101, 100)。设计分治算法对任意的n值构造相应的格雷码。/构造格雷码#include<iostream>using namespace std;int n;char a100;void gelei(int k) if(k=n) cout<<a<<endl;return; gelei(k+1); ak=
32、9;0'?'1':'0' /取反 gelei(k+1);int main() while(cin>>n && n != 0) memset(a,'0',sizeof(a); /初始化,全部置零 an ='0' gelei(0); cout<<endl; return 0;16. 矩阵乘法。两个n×n的矩阵X和Y的乘积得到另外一个n×n的矩阵Z,且Zij满足 (1i, jn),这个公式给出了运行时间为O(n3)的算法。可以用分治法解决矩阵乘法问题,将矩阵X和Y都划分
33、成四个n/2×n/2的子块,从而X和Y的乘积可以用这些子块进行表达,即从而得到分治算法:先递归地计算8个规模为n/2的矩阵乘积AE、BG、AF、BH、CE、DG、CF、DH,然后再花费O(n2)的时间完成加法运算即可。请设计分治算法实现矩阵乘法,并分析时间性能。能否再改进这个分治算法?习题51. 下面这个折半查找算法正确吗?如果正确,请给出算法的正确性证明,如果不正确,请说明产生错误的原因。int BinSearch(int r , int n, int k) int low = 0, high = n - 1;int mid;while (low <= high) mid =
34、 (low + high) / 2;if (k < rmid)high = mid;elseif (k > rmid) low = mid; else return mid; return 0;错误。正确算法:int BinSearch1(int r , int n, int k) int low = 0, high = n - 1; int mid;while (low <= high) mid = (low + high) / 2; if (k < rmid)high = mid - 1;elseif (k > rmid) low = mid + 1; els
35、e return mid; return 0; 2. 请写出折半查找的递归算法,并分析时间性能。/折半查找的递归实现#include<iostream>using namespace std;int digui_search(int a,int low,int high,int x) if (low > high) return 0; int mid = (low+high)/2; if (amid = x) return mid; else if (amid < x) digui_search(a,low,mid-1,x); else digui_search(a,m
36、id+1,high,x); int main()int a6=0,1,2,9,5,3;int result=digui_search(a,0,5,5); cout<<aresult<<endl;return 0;3. 修改折半查找算法使之能够进行范围查找。所谓范围查找是要找出在给定值a和b之间的所有元素(ab)修改第二题算法并实现:/折半查找算法使之能够进行范围查找#include <iostream>using namespace std;/折半进行范围查找函数:void digui_search(int min, int max, int a, int
37、low, int high) int mid; mid=(low+high)/2; if(amid<min) digui_search(min, max, a, mid, high); else if(amid>max) digui_search(min, max, a, low, mid); else for(int i=mid; ai>=min && i>=low; i-) cout<<ai<<" " cout<<endl; for(int j=mid+1; aj<=max &&a
38、mp; j<=high; j+) cout<<aj<<" " cout<<endl; void main() int r6, min, max; cout<<"请输入数组元素:"<<endl; for(int i=0; i<6; i+) cin>>ri; cout<<"请输入查找范围最小值min和最大值max:"<<" "cin>>min>>max; digui_search(min,
39、 max, r, 0, 5); cout<<endl;4. 求两个正整数m和n的最小公倍数。(提示:m和n的最小公倍数lcm(m, n)与m和n的最大公约数gcd(m, n)之间有如下关系:lcm(m, n)=m×n/gcd(m, n))/求两个数的最小公倍数#include<iostream>using namespace std;int main (void) int a,b; int i=1; cin>>a>>b; while(i%a!=0)|(i%b!=0) +i; cout<<"a,b最小公倍数为:&qu
40、ot;<<i<<endl;return 0;(该算法比较直接,要使其改进,可用欧几里得算法求得两个数的最大公约数,然后套用上面的公式再求最小公倍数)5. 插入法调整堆。已知(k1, k2, , kn)是堆,设计算法将(k1, k2, , kn, kn+1)调整为堆(假设调整为大根堆)。参照: void SiftHeap(int r , int k, int n)int i, j, temp;i = k; j = 2 * i + 1; /置i为要筛的结点,j为i的左孩子while (j < n) /筛选还没有进行到叶子if (j < n-1 &&
41、; rj < rj+1) j+; /比较i的左右孩子,j为较大者if (ri > rj) /根结点已经大于左右孩子中的较大者 break; else temp = ri; ri = rj; rj = temp; /将被筛结点与结点j交换 i = j; j = 2 * i + 1; /被筛结点位于原来结点j的位置进行调堆!6. 设计算法实现在大根堆中删除一个元素,要求算法的时间复杂性为O(log2n)。/将要删除的ak与最后一个元素an-1交换/然后进行调堆void de_SiftHeap(int r , int k, int n)int i, j, temp,temp1;i = k
42、; j = 2 * i + 1; if(i<0|i>n-1)return error;else if(i=n-1)free(ai);else /置i为要筛的结点,j为i的左孩子while (j < n) /筛选还没有进行到叶子temp1=ai; /将an-1与ak交换;ai=an-1;an-1= temp1;if (j < n-1 && rj < rj+1) j+; /比较i的左右孩子,j为较大者if (ri > rj) /根结点已经大于左右孩子中的较大者 break; else temp = ri; ri = rj; rj = temp;
43、/将被筛结点与结点j交换 i = j; j = 2 * i + 1; /被筛结点位于原来结点j的位置n m50 6525 130 13012 260 6 5203 1040 10401 2080 2080 3250图5.15 俄式乘法+7. 计算两个正整数n和m的乘积有一个很有名的算法称为俄式乘法,其思想是利用了一个规模是n的解和一个规模是n/2的解之间的关系:n×mn/2×2m(当n是偶数)或:n×m(n-1)/2×2mm(当n是奇数),并以1×mm作为算法结束的条件。例如,图5.15给出了利用俄式乘法计算50×65的例子。据说十九
44、世纪的俄国农夫使用该算法并因此得名,这个算法也使得乘法的硬件实现速度非常快,因为只使用移位就可以完成二进制数的折半和加倍。请设计算法实现俄式乘法。/俄式乘法#include<iostream>using namespace std;int fun(int m,int n) int sum=0; int temp=n; while(m!=1) if(m%2=0)/如果n是偶数 n=n*2; m=m/2; else/如果n是奇数 n=n*2; sum+=temp; m=(m-1)/2; temp=n;/记录倒数第二个n的值 return sum+n;int main() int a,b
45、; while(cin>>a>>b) cout<<fun(a,b)<<endl; 8. 拿子游戏。考虑下面这个游戏:桌子上有一堆火柴,游戏开始时共有n根火柴,两个玩家轮流拿走1,2,3或4根火柴,拿走最后一根火柴的玩家为获胜方。请为先走的玩家设计一个制胜的策略(如果该策略存在)。 如果桌上有小于4根的火柴,先手必胜,如果是5根,先手必输;依次类推,同理15、20、25.都是必输状态;所有每次把对手逼到15、20、25.等必输状态,就可以获胜。9. 竞赛树是一棵完全二叉树,它反映了一系列“淘汰赛”的结果:叶子代表参加比赛的n个选手,每个内部结点代表
46、由该结点的孩子结点所代表的选手中的胜者,显然,树的根结点就代表了淘汰赛的冠军。请回答下列问题:(1)这一系列的淘汰赛中比赛的总场数是多少?(2)设计一个高效的算法,它能够利用比赛中产生的信息确定亚军。(1)因为n人进行淘汰赛,要淘汰n-1人,所有要进行n-1场比赛。(2)10. 在120枚外观相同的硬币中,有一枚是假币,并且已知假币与真币的重量不同,但不知道假币与真币相比较轻还是较重。可以通过一架天平来任意比较两组硬币,最坏情况下,能不能只比较5次就检测出这枚假币?将120枚平均分为三组,记为:A,B,C;先将A,B比较,如果A,B重量不同(假如B比A重),再将B与C比较,如果B,C相同,则A
47、有假币;如果B,C不同,再将A,C比较,如果A,C相同,则B有假币;如果A,C不同,则B有假币;如果A,B相同,则C有假币;习题61. 动态规划法为什么都需要填表?如何设计表格的结构?在填写表格过程中,不仅可以使问题更加清晰,更重要的是可以确定问题的存储结构; 设计表格,以自底向上的方式计算各个子问题的解并填表。2. 对于图6.26所示多段图,用动态规划法求从顶点0到顶点12的最短路径,写出求解过程。883510234101112图6.26 第2题图567891367683533463552643 将该多段图分为四段;首先求解初始子问题,可直接获得:d(0, 1)=c015(01)d(0, 2)=c023(01)再求解下一个阶段的子问题,有:d(0,3)= d(0, 1)+ c13 =6(13)d(0,4)=mind(0,1)+ c14 ,d(0,2)+ c24=8(14)。(以此类推)最短路径为:013811123用动态规划法求如下0/1背包问题的最优解:有5个物品,其重量分别为(3, 2, 1, 4,5),价值分别为(25, 20, 15, 40, 50),背包容量为6。写出求解过程。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生院院ct诊断合作协议书(2篇)
- 产品采购合同范本
- 离职协议保证
- 二零二四年度精密仪器设备维修与保养合同
- 软装货品选购合同格式
- 房屋买卖合同的权益保护
- 建筑工程钢结构部分施工质量验收资料
- 好运石材料采购协议
- 纸张购销合同范例
- 铜墙铁壁防盗门购销合同
- 海南省海口市第十四中学等校2024-2025学年七年级上学期11月期中道德与法治试题(含答案)
- 《设备润滑与管理》课件
- 2024光伏发电并网服务合同
- 2024-2030年中国畜禽宰杀行业市场运营模式及未来发展动向预测报告
- 初中德育工作总结:活动与创新
- 诚实课件教学课件
- 广东省深圳市龙岗区多校2024-2025学年一年级(上)期中语文试卷(含答案部分解析)
- 2024-2025学年度第一学期期中学业质量监测
- 2024至2030年中国轻质墙板数据监测研究报告
- 企业技术创新与成果转化
- 中医药适宜技术推广实施方案(3篇)
评论
0/150
提交评论