第13章 能量法A_第1页
第13章 能量法A_第2页
第13章 能量法A_第3页
第13章 能量法A_第4页
第13章 能量法A_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十三章第十三章 能量法能量法13-1 概概 述述 在弹性范围内,弹性体在外力作用下发生在弹性范围内,弹性体在外力作用下发生变形而在体内积蓄的能量,称为弹性应变能,变形而在体内积蓄的能量,称为弹性应变能,简称应变能。简称应变能。 物体在外力作用下发生变形,物体的变形物体在外力作用下发生变形,物体的变形能在数值上等于外力在加载过程中在相应位移能在数值上等于外力在加载过程中在相应位移上所做的功,即上所做的功,即=WV13-2 杆件变形能计算杆件变形能计算一、轴向拉伸和压缩一、轴向拉伸和压缩WV FFlllF 21EAlFF21EAlFEAlFN2222lNxxEAxFVd)(2)(2二、扭转二、扭

2、转WV mmeM21ppepeeIGlTIGlMIGlMM222122lpxxIGxTVd)(2)(2三、弯曲三、弯曲WV 纯弯曲:纯弯曲:横力弯曲:横力弯曲:lxxIExMVd)(2)(2eM21IElMMee21IElMIElMe222213-3 变形能的普遍表达式变形能的普遍表达式1F2F3F1 2 3 332211212121FFFWV即即:线弹性体的变形能等于每一外力与其相应位移乘:线弹性体的变形能等于每一外力与其相应位移乘积的二分之一的总和。积的二分之一的总和。)(xN)(xN)(xM)(xM)(xT)(xTLLPLNGIdxxTEIdxxMEAdxxFV2)(2)(2)(222所

3、有的广义力均以静力方式,按一定比例由所有的广义力均以静力方式,按一定比例由O增加至最终值。增加至最终值。任一广义位移任一广义位移 与整个力系有关,但与其相应的广义力与整个力系有关,但与其相应的广义力 呈线性关系。呈线性关系。i iF 例:试求图示悬臂梁的应变能,并利用功例:试求图示悬臂梁的应变能,并利用功能原理求自由端能原理求自由端B的挠度。的挠度。Fxl解:解:xFxM)(lEIlFxIExMV6d2)(322BwFW21,得由WV EIFlwB33例题:悬臂梁在自由端承受集中力例题:悬臂梁在自由端承受集中力F及集中力偶矩及集中力偶矩M0作用。作用。设设EI为常数,试求梁的应变能。为常数,试

4、求梁的应变能。LFMeAB解:解: 弯矩方程弯矩方程FxMxMe)( 变形能变形能EILFEIFLMEILMdxFxMEIdxEIxMVeeLeL622)(212)(222222LFM0AB 当当F和和M0分别作用时分别作用时EILFVEILMVe623221VVV21 用普遍定理用普遍定理EILMEIFLwwweMAFAA23)()(230EILMEIFLeMAFAAe2)()(2EILMEIFMEILFMFwWVeeAeA2262121223213-4 互等定理互等定理ji位移发生点位移发生点荷载作用点荷载作用点12F1F2F11121F21222F11121,外力所作的功:,后作用先作用

5、21FF1212221112121FFFVe,外力所作的功:,后作用先作用12FF2121112222121FFFVeF21222F11121功的互等定理功的互等定理:212121FF位移互等定理位移互等定理:,则得若21FF 2112 例:求图示简支梁例:求图示简支梁C截面的挠度。截面的挠度。1CwB221BCMwF解:由功的互等定理IElFMwFC1621得:IElMwC1621由此得:F 例:求图示悬臂梁中点例:求图示悬臂梁中点C处的铅垂位移处的铅垂位移 。C1CwB221BCMwF解:由功的互等定理IElFMwFC2221得:IEMlwC821由此得:F13-5 卡氏定理卡氏定理332

6、211212121FFFWViF1F2F3F1 2 3 i若只给若只给 以增量以增量 ,其余不变,在,其余不变,在 作用下,原各力作用点将产作用下,原各力作用点将产生位移生位移iFiF,21i 变形能的增加量:变形能的增加量:iiiiFFFFV221121iF略去二阶小量,则:略去二阶小量,则:iiFFFV2211如果把原有诸力看成第一组力,把如果把原有诸力看成第一组力,把 看作第二组力,根据互等看作第二组力,根据互等定理:定理:iFiiiiFFFF2211所以:所以:iiFViiFV0iFiiFV变形能对任一载荷变形能对任一载荷Fi 的偏导数,等于的偏导数,等于Fi作用点沿作用点沿Fi方向的

7、位移方向的位移卡氏第二定理卡氏第二定理推导过程使用了互等定理,所以只适用线弹性结构。推导过程使用了互等定理,所以只适用线弹性结构。横力弯曲:LiLiiidxFxMEIxMdxEIxMFFV)()()2)(2桁架杆件受拉压:njjjjNEALFV122njijNjjjNiiFFEALFFV1轴受扭矩作用:LiPiidxFxTGIxTFV)()(13-6 单位载荷法单位载荷法 莫尔积分莫尔积分1F2FCM x( )Mx0( )M xMx( )( )01F2FCClxIExMVd2)(2lxIExMVd2)(200lxIExMxMVd2)()(2011F2FC0F10FC10F1F2F作功:0F0V

8、作功:、21FFV上又作功:在0F1101VVW共做功11VW lxIExMxMVVd2)()(1200MxEIxMxEIxM x MxEIxlll202022( )( )( )( )ddd10M x MxEIxl( )( )d M x MxEIxl( )( )0d M x MxEIxl( )( )0d莫尔定理莫尔定理(莫尔积分)(莫尔积分)M x MxEIxl( )( )0dllplNNxIExMxMxIGxTxTxAExFxFd)()(d)()(d)()(000对于组合变形:注意:上式中 应看成广义位移,把单位力看成与广义位移对应的广义力例:试用莫尔定例:试用莫尔定理计算图理计算图(a)所

9、所示示悬臂梁自由端悬臂梁自由端B的挠度和转角。的挠度和转角。FABABABlxxx11xxMFxxMbB)(,)()(,) 1 (0所示如图截面作用一单位力在解:vM x MxEIxBl( )( )0dlxIEFx02d EIFl331)(,)()(,)2(0 xMFxxMcB所示如图截面作用一单位力偶在BlM x MxEIx( )( )0dlxIEFx0dEIFl2213-7计算莫尔积分的图乘法计算莫尔积分的图乘法 在应用莫尔定理求位移时,需计算下列形在应用莫尔定理求位移时,需计算下列形式的积分:式的积分:lxIExMxMd)()(lxxMxMd )()(对于等直杆,对于等直杆,EI=con

10、st,可以提到积分号外,可以提到积分号外,故只需计算积分故只需计算积分直杆的直杆的M0(x)图必定是直线或折线。图必定是直线或折线。tg)( xxMllxxMxxxMxMd)(tgd)()(tg xCCMIEMxIExMxMCld)()(顶点顶点顶点顶点23lh13lh二次抛物线二次抛物线 例:试用图乘法求例:试用图乘法求所所示悬臂梁自由端示悬臂梁自由端B的挠度和转角。的挠度和转角。LFIEMxIExMxMwClBd)()(32212lFlIE IEFl33FlF解(1)求自由端的挠度FlFm=1(2) 求自由端的转角求自由端的转角1212FlIEB顺时针IEFl22例:试用图乘法求例:试用图

11、乘法求所所示简支梁的最大挠度和最大示简支梁的最大挠度和最大转角。转角。qlql28/l/4M325823222maxlqllIEw 53844qlEI解解(1)简支梁的最大挠度简支梁的最大挠度2183212maxqllIEqlEI324ql28/(2)求最大转角)求最大转角最大转角发生在两个支座处最大转角发生在两个支座处 例:试用图乘法求例:试用图乘法求所所示简支梁示简支梁C截面的挠截面的挠度和度和A、B截面的转角。截面的转角。CL12TU34解:解:2812MlIEwC IElm162l / 4AEIml1213mlEI6顺时针BEIml1223mlEI3逆时针 例:试用图乘法求例:试用图乘

12、法求所所示悬臂梁自由端示悬臂梁自由端B的的挠度和转角。挠度和转角。CL12TU35解:解:432312lqllIEwB qlEI48ql22BEIlql13212qlEI36顺时针ql22 例:试用图乘法求图示悬臂梁中点例:试用图乘法求图示悬臂梁中点C处的处的铅垂位移。铅垂位移。CL12TU36解:解:mlIEwC812 mlEI28 例:图示梁,抗弯刚度为例:图示梁,抗弯刚度为EI,承受均布载,承受均布载荷荷q及集中力及集中力X作用。用图乘法求:作用。用图乘法求: (1)集中力作用端挠度为零时的集中力作用端挠度为零时的X值;值; (2)集中力作用端转角为零时的集中力作用端转角为零时的X值。值

13、。CL12TU37F解:解:(1)212322322132aqlaFaaFalIEC 0ql28/)(83alaqlFF(2)211212322132qlFaFalIEC 0ql28/)32(43alaqlF 例:图示梁的抗弯刚度为例:图示梁的抗弯刚度为EI,试求,试求D点的点的铅垂位移。铅垂位移。CL12TU38解:解:32232aPaIECPaEI3 例:图示开口刚架,例:图示开口刚架,EI=const。求。求A、B两两截面的相对角位移截面的相对角位移 AB 和沿和沿P力作用线方向的力作用线方向的相对线位移相对线位移 AB 。CL12TU39解:解:ABPaEI21813212123233PaEIAB 0 例:用图乘法求图示阶梯状梁例:用图乘法求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论