版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、应用数理学院应用数理学院第一章第五节 事件的独立性 显然显然 P(A|B)=P(A)。 这就是说:这就是说:已知事件已知事件B发生,并不影响发生,并不影响事件事件A发生的概率,这时称事件发生的概率,这时称事件A、B独立。独立。一、两事件的独立性一、两事件的独立性A=第二次掷出第二次掷出6点点, B=第一次掷出第一次掷出6点点,先看一个例子:先看一个例子:将一颗均匀骰子连掷两次,将一颗均匀骰子连掷两次,设设 由乘法公式知,由乘法公式知,当事件当事件A、B独立时,有独立时,有 P(AB)=P(A) P(B)。 用用P(AB)=P(A) P(B)刻划独立性,比用刻划独立性,比用 P(A|B) = P
2、(A) 或或 P(B|A) = P(B) 更好,它不受更好,它不受P(B)0或或P(A)0的制约。的制约。P(AB)=P(B)P(A|B)若两事件若两事件A、B满足满足 P(AB)= P(A) P(B) (1)则称则称A、B独立,或称独立,或称A、B相互独立相互独立。两事件独立的定义两事件独立的定义例例1: 从一副不含大小王的扑克牌中任取一张,从一副不含大小王的扑克牌中任取一张,记记 A=抽到抽到K, B=抽到的牌是黑色的抽到的牌是黑色的。可见可见, P(AB)=P(A)P(B)。 由于由于 P(A)=4/52=1/13, 说明事件说明事件A、B独立。独立。问事件问事件A、B是否独立?是否独立
3、?解:解:P(AB)=2/52=1/26。P(B)=26/52=1/2, 前面我们是根据两事件独立的定义作前面我们是根据两事件独立的定义作出结论的,也可以通过计算条件概率去做出结论的,也可以通过计算条件概率去做: 从一副不含大小王的扑克牌中任取一张从一副不含大小王的扑克牌中任取一张,记记 A=抽到抽到K, B=抽到的牌是黑色的抽到的牌是黑色的。 在实际应用中在实际应用中, 往往往往根据问题的实际意根据问题的实际意义去判断两事件是否独立义去判断两事件是否独立 。由于由于 P(A)=1/13, P(A|B)=2/26=1/13,P(A)= P(A|B), 说明事件说明事件A、B独立。独立。 在实际
4、应用中在实际应用中,往往根据问题的实际意义往往根据问题的实际意义去判断两事件是否独立去判断两事件是否独立。 由于由于“甲命中甲命中”并不影响并不影响“乙命中乙命中”的的概率,故认为概率,故认为A、B独立独立 。甲、乙两人向同一目标射击,记甲、乙两人向同一目标射击,记 A=甲命中甲命中, B=乙命中乙命中,A与与B是否独立?是否独立?例如:例如:(即一事件发生与否并不影响另一事件发生即一事件发生与否并不影响另一事件发生 的概率的概率)。 一批产品共一批产品共n件,从中抽取件,从中抽取2件,设件,设 Ai=第第i件是合格品件是合格品, i=1,2。若抽取是有放回的若抽取是有放回的, 则则A1与与A
5、2独立。独立。 因为第二次抽取的结果受到因为第二次抽取的结果受到 第一次抽取的影响。第一次抽取的影响。又如:又如:因为第二次抽取的结果因为第二次抽取的结果不受第一次抽取的影响。不受第一次抽取的影响。若抽取是无放回的,则若抽取是无放回的,则A1与与A2不独立。不独立。请问:如图的两个事件是独立的吗?请问:如图的两个事件是独立的吗? AB即即: 若若A、B互斥,且互斥,且P(A)0, P(B)0,则则A与与B不独立。不独立。反之,若反之,若A与与B独立,且独立,且P(A)0, P(B)0, 则则A 、B不互斥。不互斥。而而P(A) 0, P(B) 0。故故 A与与B不独立。不独立。我们来计算:我们
6、来计算:P(AB)=0,P(AB) P(A)P(B)。即即 问:能否在样本空间问:能否在样本空间中找两个事件中找两个事件,它们它们既相互独立又互斥既相互独立又互斥?这两个事件就是这两个事件就是 和和。 所以,所以, 与与独立且互斥。独立且互斥。 , 因因为为不难发现,不难发现, 与任何事件都独立。与任何事件都独立。 , 0)()()( PpP设设A、B为互斥事件,且为互斥事件,且P(A)0, P(B)0,下面四个结论中,正确的是:下面四个结论中,正确的是: 前面我们看到独立与互斥的区别和联系,前面我们看到独立与互斥的区别和联系,1. P(B|A)0, 2. P(A|B)=P(A),3. P(A
7、|B)=0, 4. P(AB)=P(A)P(B)。设设A、B为独立事件,且为独立事件,且P(A)0, P(B)0,下面四个结论中,正确的是:下面四个结论中,正确的是:1. P(B|A)0, 2. P(A|B)=P(A),3. P(A|B)=0 , 4. P(AB)=P(A)P(B)。再请你做个小练习。再请你做个小练习。= P(A)- P(AB)BP(A )= P(A - A B)A、B独立独立故故A与与 独立。独立。B概率的性质概率的性质= P(A)- P(A) P(B)证明证明: 仅证仅证A与与 独立。独立。B定理:定理:若两事件若两事件A、B独立,则独立,则 BABABA与与与,也相互独立
8、。也相互独立。=P(A)1-P(B)=P(A)P( ),B二、多个事件的独立性二、多个事件的独立性将两事件独立的定义推广到三个事件:将两事件独立的定义推广到三个事件: 对于三个事件对于三个事件A、B、C,若,若 P(AB)= P(A)P(B), 四个等式同时四个等式同时 P(AC)= P(A)P(C) , 成立成立, 则称事件则称事件 P(BC)= P(B)P(C) , A、B、C相互相互 P(ABC)= P(A)P(B)P(C) 。 独立。独立。 推广到推广到n个事件的独立性定义个事件的独立性定义, 可类似地刺蛾出可类似地刺蛾出: 设设A1,A2, ,An是是 n个个事件,如果对任意事件,如
9、果对任意k( ), 任意任意 ,等式,等式包含等式总数为:包含等式总数为:。1201)11(32 nnnnnnnnnnk 1niiik 211)()()()(2121kkiiiiiiAPAPAPAAAP 成立,则称成立,则称n个事件个事件A1,A2, ,An相互独立。相互独立。请注意多个事件两两独立与事件两两相请注意多个事件两两独立与事件两两相互独立的区别与联系互独立的区别与联系两两独立两两独立相互独立相互独立对对n(n2)个事件个事件?对独立事件,许多概率计算可得到简化:对独立事件,许多概率计算可得到简化:例例2: 三人独立地去破译一份密码,已知各人三人独立地去破译一份密码,已知各人能译出的
10、概率分别为能译出的概率分别为1/5,1/3,1/4,问三人中,问三人中至少有一人能将密码译出的概率是多少?至少有一人能将密码译出的概率是多少? 解:将三人编号为解:将三人编号为1,2,3,三、独立性概念在计算概率中的应用三、独立性概念在计算概率中的应用所求为所求为 P(A1+A2+A3)。记记 Ai=第第i个人破译出密码个人破译出密码 , i=1,2,3。已知已知 :P(A1)=1/5, P(A2)=1/3, P(A3)=1/4。P(A1+A2+A3)(121nAAAP)(1321AAAP)()()(1321APAPAP=1-1-P(A1)1-P(A2)1-P(A3) 。6 . 0534332
11、541 则则请看演示请看演示“诸葛亮和臭皮匠诸葛亮和臭皮匠” n个独立事件和的概率公式个独立事件和的概率公式:nAAA,21设设事件事件 相互独立相互独立, ,则则)nAAAP21(1)(121nAAAP P(A1+An)()()(nAPAPAP211也相互独立也相互独立nAAA,21 也就是说也就是说: n个独立事件至少有一个发生个独立事件至少有一个发生的概率等于的概率等于1减去各自对立事件概率的乘积。减去各自对立事件概率的乘积。nAAA,21则则“ 至少有一个发生至少有一个发生”的概率为的概率为 P(A1+An) =1- (1-p1 ) (1-pn )。)()()(121nAPAPAP,1
12、npp nAAA,21若设若设n个独立事件个独立事件发生的概率发生的概率分别为分别为类似地,可以得出:类似地,可以得出:nAAA,21至少有一个不发生至少有一个不发生”的概率为的概率为“)(21nAAAP=1- - p1 pn 例例3:下面是一个串并联电路示意图。下面是一个串并联电路示意图。 A、B、C、D、E、F、G、H都是电路中的都是电路中的元件,各自下方的数字表示其正常工作之元件,各自下方的数字表示其正常工作之概率。概率。 求电路正常工作的概率。求电路正常工作的概率。ABCEDFGH95. 095. 095. 070. 070. 070. 075. 075. 0P(W)=P(A)P(B)
13、P(C+D+E)P(F+G)P(H)。解:将电路正常工作记成解:将电路正常工作记成W。由于各元件独立。由于各元件独立工作,所以有工作,所以有其中其中,973. 0)()()( EPDPCPP(C+D+E)=1- -。9375. 0)()( GPFPP(F+G)=1- -P(W) 0.782。代入得代入得ABCEDFGH95. 095. 095. 070. 070. 070. 075. 075. 0解解:例例4 : 验收验收100100件产品的方案如下,从中任取件产品的方案如下,从中任取3 3件进行独立地测试件进行独立地测试, ,如果至少有一件被断定为如果至少有一件被断定为次品次品, ,则拒绝接
14、收此批产品。设一件次品经测则拒绝接收此批产品。设一件次品经测试后被断定为次品的概率为试后被断定为次品的概率为0 0. .95,95,一件正品经一件正品经测试后被断定为正品的概率为测试后被断定为正品的概率为0 0. .99,99,并已知这并已知这100100件产品恰有件产品恰有4 4件次品。求此批产品能被接收件次品。求此批产品能被接收的概率。的概率。 设设 A=A=此批产品被接收此批产品被接收 , B Bi i=取出取出3 3件产品中恰有件产品中恰有i i件是次品件是次品 , i=0,1,2,3i=0,1,2,3。 则则。31003433100196242310029614131003960)(
15、,)(,)(,)(CCBPCCCBPCCCBPCCBP 因因三次测试是相互独立的,故三次测试是相互独立的,故 P(A|B0)=0.993, P(A|B1)=0.992(1-0.95), P(A|B2)=0.99(1-0.95)2, P(A|B3)= (1-0.95)3。 由全率公式由全率公式, ,得得。8629.0)()|()(30 iiiBPBAPAP解解:例例5 : 若干人独立地向一游动目标射击若干人独立地向一游动目标射击, ,每人击中目标的概率都是每人击中目标的概率都是0 0. .6 6。求至少需。求至少需要多少人要多少人, ,才能以才能以0 0. .9999以上的概率击中目以上的概率击中目标标? ? 设至少需要设至少需要n n个人个人, ,才能以才能以0 0. .9999以上的以上的概率击中目标。概率击中目标。 令令A=A=目标被击中目标被击中 , A, Ai i= = 第第i i人击中人击中目标目标 , i=1,2, i=1,2, ,n n。则。则A A1 1,A,A2 2, ,A,An n 相相互独立。于是,事件互独立。于是,事件 也也相互独立。相互独立。nAAA,21因 A=A1A2An , 得 P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网技术研发与产业化基地建设合同3篇
- 2024年度内衣品牌代理合同3篇
- 二零二四年度墙纸师傅施工材料供应合同2篇
- 2024年冷静期离婚双方责任划分合同版B版
- 二零二四年度供应链管理合同中的服务内容和责任划分3篇
- 2024年度智能化系统安装合作协议
- 2024年数据共享非泄露协议
- 2024年建筑工程施工员聘用协议标准文本版B版
- 内陆港物流合同三篇
- 2024大客车短期租赁合同范本版B版
- 高速公路日常养护作业操作规程-养护施工工艺
- 前置胎盘PPT(共31张PPT)课件
- 铁代谢障碍性贫血 (2)课件PPT
- 曼昆《经济学原理》(微观)第五版测试题库 (13)
- 9数学广角——集合(课件) 数学三年级上册(共15张PPT)人教版
- 幼儿园家园共育管理制度
- 人教版新教材五上数学期末复习计划
- 迈达斯Midas-civil 梁格法建模实例
- 《人体与运动》PPT课件(初中体育与健康)
- 玻璃幕墙工程技术规范(完整版)
- 苯-乙苯连续精馏塔的设计
评论
0/150
提交评论