




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、卷积神经网络的发展及其特点卷积神经网络的发展及其特点卷积神经网络模型卷积神经网络模型卷积神经网络的训练卷积神经网络的训练卷积神经网络应用于人卷积神经网络应用于人脸识别脸识别1.1.HubelHubel和和WieselWiesel在研究猫脑皮层中用于局部敏感方向选择的神在研究猫脑皮层中用于局部敏感方向选择的神经元时,发现其独特的网络结构可以有效降低反馈神经网络经元时,发现其独特的网络结构可以有效降低反馈神经网络的复杂性。的复杂性。2.2.FukushimaFukushima提出了第一个基于神经元之间的局部连接型和层次提出了第一个基于神经元之间的局部连接型和层次结构组织的用于转化图像的网络结构组织
2、的用于转化图像的网络NeocognitionNeocognition. .3.3.根据根据FukushimaFukushima的观点,的观点,LeCunLeCun提出了以提出了以LeNetLeNet为代表的卷积神为代表的卷积神经网络。经网络。 卷积神经网络的发展 卷积神经网络的特点1.1.卷积神经网络是一类特别设计用来处理二维数据的多层神经卷积神经网络是一类特别设计用来处理二维数据的多层神经网络。网络。2.2.卷积神经网络被认为是第一个真正成功的采用多层层次结构卷积神经网络被认为是第一个真正成功的采用多层层次结构网络的具有鲁棒性的深度学习方法。网络的具有鲁棒性的深度学习方法。3.3.用卷积神经
3、网络做图像处理时,原始图像不需要太多的预处用卷积神经网络做图像处理时,原始图像不需要太多的预处理就可以较好地学习到图像的不变性特征。理就可以较好地学习到图像的不变性特征。4.4.权值共享、局部感受野和权值共享、局部感受野和子采样子采样是卷积神经网络不同于其它是卷积神经网络不同于其它神经网络的三个主要神经网络的三个主要特征。特征。卷积神经网络模型1.输入图像通过滤波器和可加偏置进行卷积得到C1层;2.对C1层的特征图进行下采样得到S2层;3.对S2层的特征图进行卷积得到C3层;4.对C3层的特征图进行下采样得到S4层;5.S4层的特征图光栅化后变成的向量输入到传统的全连接神经网络进行进一步分类,
4、得到输出;输入输入C1S2C3S4NN卷积和下采样(降采样)过程X*input卷积过程池化过程:取某个特定区域的最大值或平均值1 11 11 10 00 0011100011100110011001 10 01 10101011 11 11 1011001图像卷积特征5 52 24 49 9386161839138取平均值94卷积神经网络的训练过程第一阶段:前向传播过程第二阶段:反向传播过程1. 从样本集中取一个样本输入到网络中;2. 计算相应的实际输出;在这个阶段,输入的信息经过逐层变换,传输到输出层。主要是前向的特征提取。1. 计算实际输出与期望输出的差;2. 按极小化误差的方法反向传播,
5、调整权值矩阵;反向传播就是误差的反向反馈和权值的更新。网络训练流程图图像输入卷积和采样过程全连接层输出层是否符合期望输出结果参数初始化前向反馈变换、计算增强、逻辑回归是前向传播否误差反馈权值更新反向传播nOlivetti Faces是纽约大学的一个比较小的人脸库n包含40个人的人脸图片,每个人10张人脸样本,共400份样本程序所参考的卷积神经网络结构:LeNet-5l 两个“卷积+子采样层”LeNetConvPoolLayerl 全连接层相当于MLP(多层感知机)中的隐含层HiddenLayerl 输出层采用逻辑回归LogisticRegressioninput+layer0(LeNetCon
6、vPoolLayer)+layer1(LeNetConvPoolLayer)+layer2(HiddenLayer)+layer3(LogisticRegression)程序模块介绍1. 加载图像数据函数: load_data(dataset_path)2. 卷积+采样层:class LeNetConvPoolLayer(object)3. 全连接层(隐藏层): class HiddenLayer(object)4. 分类器,即CNN最后一层: class LogisticRegression(object)5. 保存训练参数函数: save_params(param1,param2,param3,param4)learning_rate = 0.05/学习速率batch_size = 40 /一次输入CNN的样本数n_epochs = 100/最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农田改造劳务合同范本
- 劳务合同范本香港签字
- 医院医疗维修合同范本
- 业主入住合同范本
- 构建适应新时代需求的职业教育师资队伍
- 社交媒体平台的内容营销策略与实践
- 牵引变电培训课件
- 科技公司团队管理与远程沟通策略
- 男性健身教育与社区健康推广
- 科技创业与企业管理实战培训
- 《摄影图片分析》课件
- 青少年社会支持评定量表
- kW直流充电桩的设计
- 施工图总目录
- 《装配化工字组合梁钢桥六车道3x30m通用图》(3911-05-2021)【可编辑】
- 02S404给排水图集标准
- 人民医院诊断证明书
- 六年级劳动与技术下册《课程纲要》
- 挂牌督办安全生产重大事故隐患销号申请表
- 2023纤维增强水泥挤出成型中空墙板
- 颈源性头痛课件
评论
0/150
提交评论