




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 论文题目:某商店销售某物品的3类产品的进货问题姓名1: 学号:专业: 姓名2: 学号:专业: 姓名3: 学号:专业: 2013年5月21日1承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到
2、严肃处理。我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日赛区评阅编号(由赛区组委会评阅前进行编号):编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):15某商店销售某物品的3类产品的进货问题一、摘要 本文针对商店中三件产品每日的销售量,市场需求
3、,缺货时间及缺货量, 进货次数之间的关系进行分析,并建立数学模型对三类产品的进货策略进行优化。基于对本问题的认识并结合现实生活的常识,我们可以判定进货策略主要考虑每日的销售量、市场需求、进货次数、缺货时间及缺货量。进货策略的作用量为进货的时间间隔和进货量。 问题一:首先对所给的数据做基本的处理,并通过对销售量的分析,基于每个周期T内商品销售量在某个值浮动,我们将这个值定为该周期内的进货量。每个周期内销售量浮动越小,越能达到进出货平衡,以此作为评价模型的基准。通过c+程序编写变化周期方差的代码,方差的大小表示该周期内商品销售量的波动程度,我们通过比较各个T的方差,最终把T定为17,并且为了减少进
4、货次数,最终决定每次A,B,C商品一起进货。 问题二:首先对数据划分基期(相当于进货周期),将销售量数据和销售时间处理成线性的,去除一些主要的误差因素,建立市场需求预测模型,通过随机变量Y来表示两个需求量几乎相同的天数的间隔,分析Y可得到商品的平均需求量和在一个基期内的平均需求次数,分析两者间的分布情况,从而得到平均需求量和平均需求次数。采用matlab编程得出时间间隔为5天,A类商品每周期的需求量稳定在46左右,B类商品每周期的需求量稳定在78左右,C类商品每周期的需求量稳定在127左右。 问题三:在第一问的订货策略下,我们定为第一天进货,每个周期末统计剩余量(或缺货量),运用Excel运算
5、得各类商品的缺货情况,与相对应的周期内的需求量作比较知:A商品共缺货一次,在第17天;B商品共缺货三次,在第13,33,34天;C商品共缺货,九次,在第16,17,663,765,782,799,814,815,816天。 问题四:为了尽量降低缺货的损失,我们调整进货模式,采取随机贮存模式(s,S),约定s为各类商品在一个周期里的最小值,S为各类商品一个周期里的最大值。通过Excel处理,我们发现A商品现在缺货一次,在第17天;B商品缺货一次,在第17天;C商品缺货二次,在第16,17天。关键词:订货策略,matlab,随机贮存模式一 问题重述某商店取得了某物在该区域的市场经销权,销售该物的三
6、类产品,附表1给出了该店过去连续800多天的三类产品销售记录。根据附表1数据,解决如下问题:(1) 该店三类产品的进货策略是什么?800多天内共进了多少次货?(2) 该三类产品在该区域的市场需求如何?(3) 分析现有进货策略下,该店的缺货情况(包括缺货时间及缺货量)。(4) 如果现有进货策略已经充分考虑了该店的产品存贮能力,如何改进进货策略,将缺货损失减半,且进货次数尽可能少?二 问题的分析问题一1.通过对销售量的分析,基于对每个周期T内商品销售量在某个值浮动,我们将这个值定为该周期内的进货量,该周期内销售量浮动的越小,达到进出货平衡时,我们认为最好,以此作为评价模型的基准。通过c+程序编写变
7、化周期方差值计算的代码,方差的大小表示该周期内商品销售量的波动程度,我们通过比较各个T的波动程度决定T的大小。并且我们为了减少进货次数决定每次A,B,C商品一起进货。问题二.首先对数据划分基期(相当于进货周期),将销售量数据和销售时间处理成线性的,去除一些主要的误差因素,建立市场需求预测模型,通过随机变量Y来表示两个需求量几乎相同的天数的间隔,分析Y可得到商品的平均需求量和一个基期(进货周期)的平均需求次数,分析两者间的分布情况,从而得到平均需求量和平均需求次数。问题三:在第一问的订货策略下,我们第一天进货,每个周期末我们统计剩余量(或缺货)我们运用Excel运算得各类商品的缺货情况下表,与相
8、对应的周期内的需求量作比较就可知各类商品的缺货量情况。问题四:为了降低缺货的损失,我们调整我们的进货模式,采取随机贮存模式(s,S),我们约定s为各类商品的一个周期里的最小值,S为各类商品一个周期;里的最大值。每次周期初进货量为u,,上周期末的库存量x,按照制定(s,S)策略的要求,当周末存货量xs时,进货量u=0;当x<s时u>0,且令x+u=S。通过随机贮存模型我们不仅能降低缺货的次数,还能减少进货的次数。三 模型的假设1. 各类商品的销售量不受季节影响2. 问题所给的调查数据真实可靠,能够有效反映市场信息3. 各商品的销售量在每个周期微小波动四 模型的建立与求解问题一:1.1
9、符号说明n:表示总的销售天数m:表示总的周期数1.2我们建立周期筛选模型我们先计算各个周期的数学期望:EXT= n=825,接着我们计算对应T的方差:DX= m=,根据上式我们利用c+编程(见附件一),通过计算知:T值A的DXB的DXC的DX总的方差1530769321416268879209173586692071840137139334193790982442035106802412141961402982226107130285233388109253243979128270255490872562659871242962725137171360285696189369292891128
10、276305912611833331381071673433247134110323334713115736834311367127235321371683723661173157427374118218644638241911333863944174152409405215814739741561981404354257192243534431821615943644351791163744569144205463通过分析我们知:周期为17时方差最小,我们定进货周期为17。此时A每次进货量为47,B的进货量为79,C的进货量为127.。一共进货49次。问题二.三类商品的市场需求总体来说比较平
11、稳。虽然利用自己的经验与感觉来确定市场需求值是一种常用的直观简便的方法,但以计量经济学为理论背景的市场需求预测分析方法已被企业管理者所接受。这种预测方法把时间分割成适应企业经营需要的基本单位, 每一基本单位称为一个基期, 并以每一基期的中间时刻作为该期的代表时刻。以y(t)表示t时某种产品的需求量。影响y(t)的因素很多, 例如居民的收人、产品的价格、代用品的价格等等。把影响y(t)的诸变量记为t),(t), (t), 于是y(t)是这些变量的函数。由于总有一些误差因素, 所以Y(t)=ft),t),t) (t),(t)在实际工作中往往把预测模型(1)处理成线性的,并且不考虑误差(t),而回归
12、是解决此类问题最常用的方法。市场需求的预测模型这三种产品的市场需求量可能会受到数十种甚至更多种已知或未知因素的影响, 显然要逐一列出这些影响因素十分困难。而且题目中只给出了销售量这一种数据。但在不少场合我们更关心的不是哪些已知或未知的影响因素而是市场需求本身的两项主要信息,即需求量和需求时间。市场需求的两项主要信息一般可以用下图示图为前30天A,B,C三种商品的销售量图中横轴表示时间, 纵轴表示需求量,在T=1时刻有第一次需求, 需求量为S1, , 在时刻有第n次需求, 需求量为。显然无论需求时间和需求量都不可能是常数, 客观上它们应该是随机变量。当用随机变量Y来表示需求的间隔时间,即=-,i
13、=1,2, ,n, 这时需求随时间的变化过程构成特殊的随机过程标值点过程,.显然, 对市场需求这个标值点过程, 我们最关心的指标是任意时刻的平均需求量和一个经营基期内(如一年, 一个月, 一天等)的平均需求次数。下面先来研究一个经营基期内的平均需求次数。当用N(t)表示(0,t中的需求次数,即N(t)=supn|+t,则有(0,t中的平均需求次数为M(t)=EN(t).总的平均需求量ER=ESM(t).如果随机变量Y的分布函数F(y)服从指数分布,即F(y)=1-exp(-y),>0,则需求次数N(t)形成一泊松需求过程, 那么平均需求次数M(t)= t这是一种简单而常见的情况。在大多数
14、场合随机变量Y将不服从指数分布,于是对一般的F(y)来说, N(t)形成一更新需求过程。于是在普遍情况下, 平均需求次数M(t)的计算方法要视t来确定:(1) 对充分大的t我们有M(t) t/+0.5(/-1)式中=Ey为均值,=Dy为方差。(2) 对较小的t我们取=k/t,k是迭代步数,显然迭代步数越多越精确,这时M(t)=其中=exp(-ry)dF(y)根据同样的思路我们还可以用这个预测模型计算每次需求的平均数量。计算机实现对市场需求值进行预测时, 我们首先要针对具体产品搞市场调查。利用获得的统计数据就可以拟合出分布分布函数F(y). 由于影响市场需求值的因素多种多样.因而分布函数的性态也
15、会千差万别。然而无论分布函数呈现出怎样的形式, 都可以用PH分布F(y)=1-exp(-Ty)任意近似的拟合。所以我们只需研究N(t) 形成PH更新过程这一种情况即可.PH分布中的参数(, )是初始概率向量,T是瞬时状态生成元矩阵,且有:=(,)是行向量,=1,T=是825*3阶矩阵,=,=0,i=1, ,825;matlab运行所得系数如下(见附录二):p = 5.0e-014 * Columns 1 through 10 - 84.0000 82.0001 80.0036 -85.0456 88.2274 84.2354 85.7355 83.4893 90.5395 89.2749 Co
16、lumns 11 through 20 76.7492 83.6533 84.2843 89.4723 82.4724 82.2745 93.6942 94.1649 93.6042 92.6193 Column 21 through 27 82.5242 86.0582 87.9896 87.0504 84.1689 89.6904 87.0582(B,C商品同A代码)由此可见,A类商品的月需求量稳定在82左右,B类商品的月需求量稳定在139左右,C类商品的月需求量稳定在225左右。平均需求次数则体现在每5天左右会出现销售量的峰值和谷值,两者交替出现,并且A,B,C的平均需求次数大致相同,均
17、等于5天。而如果按进货周期17天来算的话,A类商品每周期的需求量稳定在46左右,B类商品每周期的需求量稳定在78左右,C类商品每周期的需求量稳定在127左右。总的来说,C的需求量最大,B次之,A最少,且大体上C是A的三倍,B是A的两倍。问题三:在第一问的订货策略下,我们第一天进货,每个周期末我们统计剩余量(或缺货)我们运用Excel运算得各类商品的缺货情况下表,与相对应的周期内的需求量作比较知:A商品共缺货一次,在第17天;B商品共缺货三次,在第13,33,34天;C商品共缺货,九次,在第16,17,663,765,782,799,814,815,816天缺货一览表第i次进货A需求量B需求量C
18、需求量149-282-3133-6242585-612343443681112834470562311512554177212526425781127075307091341084167181316955-28449126110416923612431149456231361123988058105221354583541311914443772123415523781134161631168452128151742575411981851207271371319501797451301020425651411314214920754121622511693491372023351286421
19、43424461709115122553237091161126389815813420275722983912432845271812072945275411983043485451313431470883612613241672712703355287181342834502598321225355319718122536434803913827375020883014683841674513053953208232142-1040434842712164141677212704254237181234434618036131644512085301252455512790140-5464
20、618326132-5475199114136-948407754120749301734455968A商品的进货量为47B商品的进货量为79A商品的进货量为127问题四: 为了降低缺货的损失,我们调整我们的进货模式,采取随机贮存模式(s,S),我们约定s为各类商品的一个周期里的最小值,S为各类商品一个周期;里的最大值。每次周期初进货量为u,,上周期末的库存量x,按照制定(s,S)策略的要求,当周末存货量xs时,进货量u=0;当x<s时u>0,且令x+u=S。通过Excel处理,我们发现A商品现在缺货一次,在第17天;B商品缺货一次,在第17天;C商品缺货二次,在第16,17天。第
21、i次进货A需求量进货量库存量B需求量进货量库存量C需求量进货量库存量14947-28279-3133127-624257158598131231462334442136885301281231844744105668421151283155447377562112511521642541578772012712519753424707828134127128415316717027131134159554128471141261312010415516928461241262211494185692421361241012394918805618105136411354393838015131
22、105151444541377832112313123155244578772013412312163152268478141281341817423115758423119128271851426727526137119919505179772113013716204250156597331131303321494287565231211132522514969375513712192335512286931214313732446351170862811514331255346470702811611530263853198170171341161227573809881012413422
23、284557127198271201242629454512757123119120273043451485751313111915314743108885101261312032414716728826127126193355412717227134127123450557987101221342435535047198271221222436435314807118138122837504378880101461380384150167488241301461639534148274161421304404353148482141211422541414316778421127121194
24、254413717727123127234346541180711813112315445146685801312513121455551279851914012564646551183791513214014475146691837136132104840511775912312013626493040273475645912087A商品的进货量为47B商品的进货量为79A商品的进货量为127五模型的评价与改进在本文中讨论的是商店在每个周期末均需盘点某商品在自己商店内的库存数量,以便在此时向商品供应商提出合适的进货数量计划,满足下个周期内销售这种商品之需。针对以上问题和所得的题设及条件,我们
25、决策时对各个周期内销售量影响进行讨论。由于在进行以上讨论时,为讨论方便和方程的相互对比性,其中一部分量采用了在长期经营活动中的期望值而不是严格的数学表达方程来表达,所以在描述进货决策时具有一定的方法误差,从数据处理、资料查询、材料筛选最后到模型建立,我们主要考虑我们现有资源、能力和时间因素,模型既有它的优点也有不足之处。不足之处:由于个人能力有限和时间因素,在讨论决策问题时和求解模型变量时,直接使用利用EXCEL和Mathematica4.0进行数据的分析、处理和求解,没有对各个变量进行数据仿真和其相关性的检测,对没有提及的变量没有进行相关的检测,而是直接默认为他们是相关的并且其变化只受到上述
26、变量的影响。为此而产生的误差没有考虑。【参考文献】1 姜启源,谢金星,叶俊 数学模型( 第三版) 北京:高等教育出版社,20032 陈恩水,王峰.数学建模与实验,北京:科学出版社,2011附录一:求方差程序(只附带C商品的,A,B商品数据换之)#include<iostream.h>#include<iomanip.h>#define N 34void main() int i,s=0,n=0,x=0,sum=0,total=0,avg=0,d=0; int b825/N;int a825=8,13,8,8,13,7,5,10,5,7,11,7,6,10,2,9,4,4
27、,7,10,13,9,8,2,10,10,11,3,4,13,3,5,5,6,9,10,13,9,10,6,6,6,2,7,5,6,9,6,10,8,6,6,11,7,10,6,8,6,6,15,7,11,3,0,0,5,8,6,4,9,7,8,3,9,15,5,5,9,7,8,6,9,5,12,4,5,6,9,5,8,6,9,6,11,15,9,1,10,5,9,7,6,7,4,7,5,9,8,7,8,9,11,8,12,6,12,4,9,8,13,10,6,15,7,5,6,6,1,6,10,3,11,10,6,9,7,7,7,5,9,8,7,9,6,7,7,12,4,12,6,5,9,6
28、,5,4,8,8,6,7,14,10,4,4,4,8,6,15,4,9,8,6,10,8,3,7,6,11,9,11,12,3,12,10,8,5,7,8,8,12,4,0,0,0,0,6,10,7,8,10,11,4,13,4,8,10,10,8,5,6,15,6,5,11,9,7,3,11,6,8,3,8,10,11,7,6,5,10,4,7,10,4,8,8,10,4,2,8,9,10,8,4,12,4,9,9,5,10,8,7,7,3,9,5,11,13,4,3,1,12,12,13,9,6,13,7,8,6,5,7,9,8,5,7,11,3,8,7,8,4,7,2,6,10,7,11
29、,3,7,6,12,1,9,10,17,8,13,10,12,1,6,8,7,5,12,2,8,8,5,7,7,11,7,7,6,15,11,4,11,7,6,0,7,15,4,4,9,4,4,3,10,10,7,10,8,9,8,6,2,5,6,8,11,6,7,11,10,8,13,10,5,7,9,4,0,0,8,4,8,9,8,7,12,11,5,5,10,8,7,11,6,11,5,7,5,10,11,3,9,11,11,7,5,5,3,10,10,4,10,11,12,8,13,13,8,9,11,1,0,0,6,12,5,6,2,8,6,12,12,4,9,13,5,10,8,2
30、,0,4,7,7,5,8,10,7,5,6,10,8,5,9,14,6,12,10,6,7,10,7,6,7,7,7,4,9,13,3,6,6,0,8,10,6,4,9,8,12,12,9,5,5,8,9,9,10,6,7,9,10,5,10,10,7,7,7,4,10,0,0,9,5,7,8,12,8,5,7,10,5,5,7,4,4,9,7,7,6,11,4,13,12,5,7,11,8,8,16,14,2,3,0,7,4,11,3,4,10,4,9,9,8,9,8,4,8,11,6,11,5,6,15,3,11,8,7,9,7,6,5,5,7,9,5,1,10,8,11,6,9,8,5,7,9,9,7,11,6,8,7,3,10,8,13,8,8,8,9,7,8,9,6,10,2,8,5,9,6,9,6,6,6,4,11,4,3,6,10,11,7,8,5,11,7,12,6,2,7,8,4,8,16,13,5,4,4,5,10,12,11,7,12,7,6,8,6,13,12,11,13,9,6,8,11,7,3,5,10,9,8,11,7,3,10,5,8,7,11,9,10,7,4,6,8,6,10,9,9,3,8,0,10,10,14,8,6,11,0,11,8,6,9,11,9,7,12,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 往年经济法试题及答案
- 系统架构设计师项目成功标准试题及答案
- 明确复习方向的护士资格证考试试题及答案
- 考试周期2025年计算机二级考试试题及答案
- 我与地坛节选试题及答案
- 系统架构设计师考试创新设计的方法与案例试题及答案
- 深入理解2024年系统规划与管理师考试内容试题及答案
- 系统架构设计师考试相关工具使用试题及答案
- 药物潜在风险的识别与评估试题及答案
- 文化产业管理证书考试内容全面
- 三叉神经痛患者的护理
- 语文学业质量监测-国测四年级模拟试题(A)
- 亚朵服务流程
- 手术分级管理制度
- 地下停车场预算报价
- 企业质量管理体系的建设
- 治安案件派出所调解书范本
- 绘本故事-我喜欢书
- 地下停车场交通设施及环氧地坪工程施工技术方案
- GB/T 26038-2023钨基高比重合金板材
- 《活着》读后感课件
评论
0/150
提交评论