考研导数定义1)_第1页
考研导数定义1)_第2页
考研导数定义1)_第3页
考研导数定义1)_第4页
考研导数定义1)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导数与微分导数与微分微分学导数导数描述函数变化快慢微分微分描述函数变化程度都是描述物质运动的工具 (从微观上研究函数)大纲要求大纲要求 1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系 2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分大纲要求大纲要求 3、了解高阶导数的概念,会求简单函数的高阶导数 4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数. 一一

2、 、导数的定义、导数的定义定义定义1 . 设函数)(xfy 在点0 x0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx存在,)(xf并称此极限为)(xfy 记作:;0 xxy; )(0 xf ;dd0 xxxy0d)(dxxxxf即0 xxy)(0 xf xyx0limxxfxxfx)()(lim000hxfhxfh)()(lim000则称函数若的某邻域内有定义 , 在点0 x处可导可导, 在点0 x的导数导数. 机动 目录 上页 下页 返回 结束 运动质点的位置函数)(tfs so0t)(0tf)(tft在 时刻的瞬时速度0t lim0ttv)()(0tft

3、f0tt 曲线)(:xfyC在 M 点处的切线斜率xyo)(xfy CNT0 xMx lim0 xxk)()(0 xfxf0 xx )(0tf )(0 xf 说明说明: 在经济学中, 边际成本率,边际劳动生产率和边际税率等从数学角度看就是导数.机动 目录 上页 下页 返回 结束 0limxx00)()(xxxfxfxyx0lim)()(0 xfxfy0 xxx若上述极限不存在 ,在点 不可导. 0 x若,lim0 xyx也称)(xf在0 x若函数在开区间 I 内每点都可导,此时导数值构成的新函数称为导函数.记作:;y;)(xf ;ddxy.d)(dxxf注意注意:)(0 xf 0)(xxxfx

4、xfd)(d0就说函数就称函数在 I 内可导. 的导数为无穷大 .机动 目录 上页 下页 返回 结束 则令,0hxt原式htfhtfh2)()2(lim0)(lim0tfh)(0 xf 是否可按下述方法作:例例. 证明函数xxf)(在 x = 0 不可导. 证证:hfhf)0()0(hh0h,10h,1hfhfh)0()0(lim0不存在 , .0不可导在即xx例例. 设)(0 xf 存在, 求极限.2)()(lim000hhxfhxfh解解: 原式0limhhhxf2)(0)(0 xfhhxf2)( 0)(0 xf)(210 xf )(210 xf )(0 xf )( 2 )(0hhxf)(

5、0 xf机动 目录 上页 下页 返回 结束 二、二、 导数的几何意义导数的几何意义xyo)(xfy CT0 xM曲线)(xfy 在点),(00yx的切线斜率为)(tan0 xf 若,0)(0 xf曲线过上升;若,0)(0 xf曲线过下降;xyo0 x),(00yx若,0)(0 xf切线与 x 轴平行,称为驻点驻点;),(00yx),(00yx0 x若,)(0 xf切线与 x 轴垂直 .曲线在点处的),(00yx切线方程切线方程:)(000 xxxfyy法线方程法线方程:)()(1000 xxxfyy)0)(0 xfxyo0 x,)(0时 xf机动 目录 上页 下页 返回 结束 处可导在点xxf

6、)(三、三、 函数的可导性与连续性的关系函数的可导性与连续性的关系定理定理1.处连续在点xxf)(证证: 设)(xfy 在点 x 处可导,)(lim0 xfxyx存在 , 因此必有,)(xfxy其中0lim0 x故xxxfy)(0 x0所以函数)(xfy 在点 x 连续 .注意注意: 函数在点 x 连续未必可导连续未必可导.反例反例:xy xyoxy 在 x = 0 处连续 , 但不可导.即机动 目录 上页 下页 返回 结束 在点0 x的某个右右 邻域内四、四、 单侧导数单侧导数)(xfy 若极限xxfxxfxyxx)()(limlim0000则称此极限值为)(xf在 处的右右 导数导数,0

7、x记作)(0 xf即)(0 xfxxfxxfx)()(lim000(左)(左左)0( x)0( x)(0 xf0 x例如例如,xxf)(在 x = 0 处有,1)0(f1)0(fxyoxy 定义定义2 . 设函数有定义,存在,机动 目录 上页 下页 返回 结束 定理定理2. 函数在点0 x)(xfy ,)()(00存在与xfxf且)(0 xf. )(0 xf)(0 xf 存在)(0 xf)(0 xf简写为在点处右右 导数存在0 x定理定理3. 函数)(xf)(xf在点0 x必 右右 连续.(左左)(左左)若函数)(xf)(af)(bf与都存在 , 则称)(xf显然:)(xf在闭区间 a , b

8、 上可导,)(baCxf在开区间 内可导,),(ba在闭区间 上可导.,ba可导的充分必要条件是且机动 目录 上页 下页 返回 结束 解解: 因为1. 设)(xf 存在, 且, 12)1 () 1 (lim0 xxffx求).1 (f xxffx2)1 () 1 (lim0所以. 2) 1 ( fxfxfx2) 1 ()1 (lim0)() 1 ()(1 (lim210 xfxfx1) 1 (21f机动 目录 上页 下页 返回 结束 )(xf在 0 x处连续, 且xxfx)(lim0存在, 证明:)(xf在0 x处可导.证证:因为xxfx)(lim0存在, 则有0)(lim0 xfx又)(xf

9、在0 x处连续,0)0(f所以xxfx)(lim0即)(xf在0 x处可导.2. 设xfxfx)0()(lim0)0(f 故机动 目录 上页 下页 返回 结束 3.3.设)(xf在2x处连续,且, 32)(lim2xxfx求. )2(f 解解:)2(f)(lim2xfx)2()()2(lim2xxfxx02)2()(lim)2(2xfxffx2)(lim2xxfx3机动 目录 上页 下页 返回 结束 4.4.设1lim)() 1() 1(2xnxnnebaxexxf试确定常数 a , b 使 f (x) 处处可导,并求. )(xf 解解: :)(xf1x,bxa 1x, ) 1(21ba1x,2x,1时x;)(axf时,1x.2)(xxf) 1 ()1 ()1 (fff) 1 () 1 (ff得处可导,在利用1)(xxf即ba1) 1(21ba2a机动 目录 上页 下页 返回 结束 , 1,2ba2) 1 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论