毕业设计汽车驱动桥设计_第1页
毕业设计汽车驱动桥设计_第2页
毕业设计汽车驱动桥设计_第3页
毕业设计汽车驱动桥设计_第4页
毕业设计汽车驱动桥设计_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上专心-专注-专业目 录中文摘要英文摘要1 前言2 总体方案的布置3 驱动桥零部件的设计3.1 主减速器设计3.2 差速器设计3.3 半轴的设计3.4 驱动桥壳设计4 CRUISE 软件的分析5 优化设计6 结论参考文献附件清单致 谢精选优质文档-倾情为你奉上专心-专注-专业1 1 前言前言本设计课题是改进 CA7204 型汽车驱动桥的设计。故本说明书将以“驱动桥设计”内容对驱动桥及其主要零部件的结构型式、设计计算及性能分析作一一介绍。汽车驱动桥位于传动系的末端,其基本功用是增大由传动轴或直接从变速器传来的转矩,将转矩合理的分配给左、右驱动车轮具有汽车行驶运动学所要求的

2、差速功能。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构型式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构型式、设计计算方法与性能分析。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车驱动桥结构型式和设计参数除对汽车的可靠性与耐久性有重要影响外,也对汽车的行驶性能如动力性、经济性、平顺性、通过性、机动性和操动稳定性等有直接影响。另外,汽车驱动桥在汽车的各种总成中也是涵盖机械零件、部件、分

3、总成等的品种最多的大总成。例如,驱动桥包含主减速器、差速器、半轴、桥壳和各种齿轮。由上述可见,汽车驱动桥设计涉及的机械零部件及元件的品种极为广泛,对这些零部件、元件及总成的制造也几乎要设计到所有的现代机械制造工艺。因此,通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能。他有以下两大难题,一是将发动机输出扭矩通过变速箱将动力传递到差速器上,达到更好的车轮牵引力与转向力的有效发挥,从而提高汽车的行驶能力。二是差速器向两边半轴传递动力的同时,允许两边半轴以不同的转速旋转,满足两边车轮尽可能以纯滚动的形式作不等距行驶,减少轮胎与地面的摩擦。本课题的设计思路可

4、分为以下几点:首先选择初始方案,CA7204 型轿车属于乘用车,采用发动机横置前轮驱动,所以设计的驱动桥结构需要符合乘用车的结构要求;接着选择各部件的结构形式;最后选择各部件的具体参数,设计出各主要尺寸,再通过各部件的具体参数进行 cruise 的性能分析,然后对各参数进行优化设计。所设计的 CA7204 型轿车驱动桥制造工艺性好、外形美观,工作更稳定、可靠。驱动桥结构符合 CA7204 型轿车的整体结构要求。设计的产品达到了结构简单,修理、精选优质文档-倾情为你奉上专心-专注-专业保养方便;机件工艺性好,制造容易的要求。目前我国正在大力发展汽车产业,采用前轮驱动汽车的平衡性和操作性都将会有很

5、大的提高。对于乘用汽车来说,要改善其动力性与燃油经济性,这便对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对载货汽车,对于乘用车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下

6、,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。所以前轮驱动必然会使得乘车更加安全、舒适,由于前驱传动效率比后驱要高,所以还会带来可观的经济效益。2 2 总体方案总体方案的布置的布置驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力和横向力。驱动桥一般由主减速器、差速器、半轴和驱动桥壳四大部分组成。驱动桥设计应当满足如下基本要求:a)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。b)外形尺寸要小,保证有必要的离地间隙。c)齿轮及

7、其它传动件工作平稳,噪声小。d)在各种转速和载荷下具有高的传动效率。e)在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 f)与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动协调。精选优质文档-倾情为你奉上专心-专注-专业g)结构简单,加工工艺性好,制造容易,拆装,调整方便。驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥,后者称为独立悬架驱动桥。断开式驱动桥的簧下质量较小,又与独立

8、悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,独立悬架驱动桥结构虽然叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。 由于断开式驱动桥工作可靠,平稳性好,查阅资料,参照国内相关轿车的设计,最后本课题 CA7204 型轿车选用断开式驱动桥。其结构如图所示:3 驱动桥各零部件的设计 3.1 主减速器设计主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮或斜齿圆柱齿轮

9、带动齿数多的锥齿轮或斜齿圆柱齿轮。对发动机纵置的汽车,精选优质文档-倾情为你奉上专心-专注-专业其主减速器还利用锥齿轮传动以改变动力方向。对发动机横置的汽车,其主减速器就采用直齿轮传动而不必改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。驱动桥中主减速器、差速器设计应满足如下基本要求:a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件

10、工作平稳,噪音小。c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。e)结构简单,加工工艺性好,制造容易,拆装、调整方便。3.1.1 主减速器结构方案分析主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。(1)斜齿圆柱齿轮传动 图 3-1 斜齿圆柱齿轮传动按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动

11、机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。精选优质文档-倾情为你奉上专心-专注-专业为了尽可能抵消主动轴上轴承的轴向力,主减速器中基本不用直齿圆柱齿轮而采用斜齿圆柱齿轮。此外,斜齿圆柱齿轮还具有运转平稳、噪声小等优点,汽车上获得广泛应用。查阅文献1、2,经方案论证,主减速器的齿轮选用斜齿圆柱齿轮形式(如图 3-1 示) 。斜齿圆柱齿轮传动的主、从动齿轮轴线相互平行,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。它工作平稳、能承受较大的负荷。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。(2) 结构形式为了满足不同的使用要

12、求,主减速器的结构形式也是不同的。按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器、双速主减速器、双级减速配以轮边减速器等。双级式主减速器应用于大传动比的中、重型汽车上,若其第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,则称轮边减速器。单级式主减速器应用于轿车和一般轻、中型载货汽车。单级主减速器由一对圆柱齿轮(或者一对圆锥齿轮)组成,具有结构简单、质量小、成本低、使用简单等优点。查阅文献1、2,经方案论证,本设计主减速器采用单级主减速器。其传动比 i0一般小于等于 7。3.1.2 主减速器主、从动斜齿圆柱齿轮的支承方案主减速器中心必须保证主从动齿轮具有良好的啮

13、合状况,才能使它们很好地工作。齿轮的正确啮合,除了与齿轮的加工质量装配调整及轴承主减速器壳体的刚度有关以外,还与齿轮的支承刚度密切相关。(1)主动斜齿圆柱齿轮的支承图 3-2 主动锥齿轮跨置式主动斜齿圆柱齿轮的支承形式可分为悬臂式支承和跨置式支承两种。查阅资料、文献,经方案论证,采用跨置式支承结构(如图 3-2 示) 。齿轮前、后两端的轴颈均精选优质文档-倾情为你奉上专心-专注-专业以轴承支承,故又称两端支承式。跨置式支承使支承刚度大为增加,使齿轮在载荷作用下的变形大为减小,约减小到悬臂式支承的 130 以下而主动斜齿圆柱齿轮后轴承的径向负荷比悬臂式的要减小至 1/51/7。齿轮承载能力较悬臂

14、式可提高 10%左右。 本课题所设计的CA7204 型汽车装载质量最大为 2.015t,所以选用跨置式可以提高齿轮的承载能力。(2)从动斜齿圆柱齿轮的支承图 3-3 从动锥齿轮支撑形式从动斜齿圆柱齿轮采用圆锥滚子轴承支承(如图 3-3 示) 。为了增加支承刚度,两轴承的圆锥滚子大端应向内,以减小尺寸 c+d。为了使从动斜齿圆柱齿轮背面的差速器壳体处有足够的位置设置加强肋以增强支承稳定性,c+d 应不小于从动斜齿圆柱齿轮大端分度圆直径的 70%。为了使载荷能均匀分配在两轴承上,应是 c 等于或大于 d。3.1.3 主减速器斜齿圆柱齿轮设计 主减速比 i 、驱动桥的离地间隙和计算载荷,是主减速器设

15、计的原始数据,0应在汽车总体设计时就确定。(1) 主减速比 i 的确定0主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。i 的选择应在汽车总体设计时和0传动系的总传动比 i 一起由整车动力计算来确定。可利用在不同 i 下的功率平衡田0来研究 i 对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配0的方法来选择 i 值,可使汽车获得最佳的动力性和燃料经济性。0精选优质文档-倾情为你奉上专心-专注-专业对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率及其转速的情况下,所选择的 i 值应能保证

16、这些汽车有尽可能高amaxPpn0的最高车速。这时 i 值应按下式来确定:amaxv0 5.655 rp0amax ghr ni =0.377vi(3-1)式中:车轮的滚动半径, =0.306mrrrrigh变速器量高档传动比。igh =0.680对于其他汽车来说,为了得到足够的功率储备而使最高车速稍有下降,i 一般0选择比上式求得的大 1025,即按下式选择: (3-rp0amax gh Fh LBr ni =(0.3770.472)vi i i2)式中:i分动器或加力器的高档传动比iLB轮边减速器的传动比。根据所选定的主减速比 i0值,就可基本上确定主减速器的减速型式(单级、双级等以及是否

17、需要轮边减速器) ,并使之与汽车总布置所要求的离地间隙相适应。把 nn=6000r/n , =205km/h , r =0.306m , igh=0.68 代入(3-1)amaxvr计算出 i =4.970从动斜齿圆柱齿轮计算转矩 TceTce= (3-demax1 f 0k Tki i i n3)式中:Tce计算转矩,Nm;Temax发动机最大转矩;Temax =183 Nmn计算驱动桥数,1;if分动器器传动比,if=1;精选优质文档-倾情为你奉上专心-专注-专业i0主减速器传动比,i0=4.97;变速器传动效率,=0.97;k液力变矩器变矩系数,K=1;Kd由于猛接离合器而产生的动载系数

18、,Kd=1;i1变速器最低挡传动比,i1=3.54;n 与选取见下表。if车型高档传动比与抵挡传动比的关系fgifdifin/2fgifdifgi14*4/2fgifdifgi26*66 时,取 85%,当=e,由此得arFFX=0.4,Y=1.7。另外查得载荷系数 fp=1.2。P=fp(XFr+YFa) (3-24)将各参数代入式(3-24)中,有: P=7533N轴承应有的基本额定动负荷 CrCr= (3-10h36t60nLPf1025)式中:ft温度系数,查文献4,得 ft=1;滚子轴承的寿命系数,查文献4,得 =10/3;n轴承转速,r/min;Lh轴承的预期寿命,5000h;将各

19、参数代入式(3-25)中,有;Cr=24061N初选轴承型号查文献3,初步选择 Cr =24330N Cr的圆锥滚子轴承 7206E。验算 7206E 圆锥滚子轴承的寿命Lh = (3-26)trrf C16667nP将各参数代入式(3-24)中,有:精选优质文档-倾情为你奉上专心-专注-专业 Lh =4151h5000h所选择 7206E 圆锥滚子轴承的寿命低于预期寿命,故选 7207E 轴承,经检验能满足。轴承 B、轴承 C、轴承 D、轴承 E 强度都可按此方法得出,其强度均能够满足要求。4 差速器设计汽车在行使过程中,左右车轮在同一时间内所滚过的路程往往是不相等的,左右两轮胎内的气压不等

20、、胎面磨损不均匀、两车轮上的负荷不均匀而引起车轮滚动半径不相等;左右两轮接触的路面条件不同,行使阻力不等等。这样,如果驱动桥的左、右车轮刚性连接,则不论转弯行使或直线行使,均会引起车轮在路面上的滑移或滑转,一方面会加剧轮胎磨损、功率和燃料消耗,另一方面会使转向沉重,通过性和操纵稳定性变坏。为此,在驱动桥的左右车轮间都装有轮间差速器。差速器是个差速传动机构,用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。差速器按其结构特征可分为齿轮式、凸轮式、蜗轮式和牙嵌自由轮式等多种形式。4.1 差速器结构形式选择 汽车上广泛

21、采用的差速器为对称锥齿轮式差速器,具有结构简单、质量较小等优点,应用广泛。它可分为普通锥齿轮式差速器、摩擦片式差速器和强制锁止式差速器。普通齿轮式差速器的传动机构为齿轮式。齿轮差速器要圆锥齿轮式和圆柱齿轮式两种。强制锁止式差速器就是在对称式锥齿轮差速器上设置差速锁。当一侧驱动轮滑转时,可利用差速锁使差速器不起差速作用。差速锁在军用汽车上应用较广。查阅文献5经方案论证,差速器结构形式选择对称式圆锥行星齿轮差速器。普通的对称式圆锥行星齿轮差速器由差速器左、右壳,2 个半轴齿轮,4 个行星齿轮(少数汽车采用 3 个行星齿轮,小型、微型汽车多采用 2 个行星齿轮),行星齿轮轴(不少装 4 个行星齿轮的

22、差逮器采用十字轴结构),半轴齿轮及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,最广泛地用在轿车、客车和各种公路用载货汽车上有些越野汽车也采用了这种结构,但用到越野汽车上需要采取防滑措施。例如加进摩擦元件以增大其内摩擦,提高其锁紧系数;或加装可操纵的、能强制锁住差速器的装置差速锁等。4.2 普通锥齿轮式差速器齿轮设计a) 行星齿轮数 n精选优质文档-倾情为你奉上专心-专注-专业通常情况下,货车的行星齿轮数 n=4。b) 行星齿轮球面半径 Rb行星齿轮球面半径 Rb反映了差速器锥齿轮节锥矩的大小和承载能力。Rb=Kb (4-1)3dT式中:Kb行星齿轮球面

23、半径系数,Kb=2.53.0,对于有两个行星齿轮的轿车取最大值;Td差速器计算转矩,Nm;将各参数代入式(4-1) ,有:Rb=34 mmc)行星齿轮和半轴齿轮齿数 z1和 z2为了使轮齿有较高的强度,z1一般不少于 10。半轴齿轮齿数 z2在 1425 选用。大多数汽车的半轴齿轮与行星齿轮的齿数比在 1.52.0 的范围内,且半轴齿轮21zz齿数和必须能被行星齿轮齿数整除。查阅资料,经方案论证,初定半轴齿轮与行星齿轮的齿数比=2,半轴齿轮齿21zz数 z2=24,行星齿轮的齿数 z1=12。d) 行星齿轮和半轴齿轮节锥角 1、2及模数 m行星齿轮和半轴齿轮节锥角 1、2分别为 1= (4-2

24、)12zarctanz2= (4-3)21zarctanz将各参数分别代入式(42)与式(43) ,有:1=27,2=63锥齿轮大端模数 m 为 m= (4-4)0112A sinz将各参数代入式(4-4) ,有:m=5.497查阅文献3,取模数 m=5.5e)半轴齿轮与行星齿轮齿形参数精选优质文档-倾情为你奉上专心-专注-专业按照文献3中的设计计算方法进行设计和计算,结果见表 4-1。f)压力角 汽车差速齿轮大都采用压力角 =2230,齿高系数为 0.8 的齿形。表 4-1 半轴齿轮与行星齿轮参数参 数符 号半轴齿轮行星齿轮分度圆直径d14196齿顶高ha*1.833.76齿根高hf4.43

25、2.5齿顶圆直径da144103齿根圆直径df13384齿顶角a419231齿根角f231419分度圆锥角6327顶锥角a67192931根锥角f60292241锥距R4746分度圆齿厚s99齿宽b2027g)行星齿轮轴用直径 d行星齿轮轴用直径 d(mm)为 d= (4-5) 30cdT101.1 nr式中:T0差速器壳传递的转矩,Nm;n行星齿轮数;rd行星齿轮支承面中点到锥顶的距离,mm;c支承面许用挤压应力,取 98 MPa;将各参数代入式(4-5)中,有:d=15.7mm,取 16mm。4.3 差速器齿轮的材料差速器齿轮和主减速器齿轮一样,基本上都是用渗碳合金钢制造,目前用于制精选优

26、质文档-倾情为你奉上专心-专注-专业造差速器锥齿轮的材料为 20CrMnTi、20CrMoTi、22CrMnMo 和 20CrMo 等。由于差速器齿轮轮齿要求的精度较低,所以精锻差速器齿轮工艺已被广泛应用。4.4 普通锥齿轮式差速器齿轮强度计算差速器齿轮的尺寸受结构限制,而且承受的载荷较大,它不像主减速器齿轮那样经常处于啮合传动状态,只有当汽车转弯或左、右轮行使不同的路程时,或一侧车轮打滑而滑转时,差速器齿轮才能有啮合传动的相对运动。因此,对于差速器齿轮主要应进行弯曲强度计算。轮齿弯曲应力 w(MPa)为w= (4-6)3smv222Tk k10k mb d Jn式中:n行星齿轮数;J综合系数

27、,取 0.01;b2半轴齿轮齿宽,mm;d2半轴齿轮大端分度圆直径,mm;T半轴齿轮计算转矩(Nm) ,T=0.6 T0;ks、km、kv按照主减速器齿轮强度计算的有关转矩选取;将各参数代入式(4-6)中,有:w=852 MPa按照文献1, 差速器齿轮的 ww=980 MPa,所以齿轮弯曲强度满足要求。5 驱动车轮的传动装置设计驱动车轮的传动装置设计驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向节传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴

28、齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。5.1 半轴的型式普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同而分为半浮式、3/4 浮式和全浮式三种。半浮式半轴以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定,或以突缘直接与车轮轮盘及制动鼓相联接)。因此,半浮式半轴除传递转矩外,还要承受车轮传来的弯矩。由此可见,半浮式半轴承受的载荷复杂,但它具有结构简单、质量小、尺寸紧凑、造价低廉等优点。用于质量较小、使用条件较好、承载负荷也不大的轿车和轻型载货汽车。3/4 浮式半轴的结构特点是半

29、轴外端仅有一个轴承并装在驱动桥壳半轴套管的精选优质文档-倾情为你奉上专心-专注-专业端部,直接支承着车轮轮毂,而半轴则以其端部与轮毂相固定。由于一个轴承的支承刚度较差,因此这种半轴除承受全部转矩外,弯矩得由半轴及半轴套管共同承受,即 3/4 浮式半轴还得承受部分弯矩,后者的比例大小依轴承的结构型式及其支承刚度、半轴的刚度等因素决定。侧向力引起的弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命。可用于轿车和轻型载货汽车,但未得到推广。全浮式半轴的外端与轮毂相联,而轮毂又由一对轴承支承于桥壳的半轴套管上。多采用一对圆锥滚子轴承支承轮毂,且两轴承的圆锥滚子小端应相向安装并有一定的预紧,调好后由锁紧螺母

30、予以锁紧,很少采用球轴承的结构方案。由于车轮所承受的垂向力、纵向力和侧向力以及由它们引起的弯矩都经过轮毂、轮毂轴承传给桥壳,故全浮式半轴在理论上只承受转矩而不承受弯矩。但在实际工作中由于加工和装配精度的影响及桥壳与轴承支承刚度的不足等原因,仍可能使全浮式半轴在实际使用条件下承受一定的弯矩,弯曲应力约为 570MPa。具有全浮式半轴的驱动桥的外端结构较复杂,需采用形状复杂且质量及尺寸都较大的轮毂,制造成本较高,故轿车及其他小型汽车不采用这种结构。但由于其工作可靠,故广泛用于轻型以上的各类汽车上。5.2 半轴的设计与计算半轴的主要尺寸是它的直径,设计与计算时首先应合理地确定其计算载荷。半轴的计算应

31、考虑到以下三种可能的载荷工况:a)纵向力 X2最大时(X2Z2)附着系数尹取 0.8,没有侧向力作用;b)侧向力 Y2最大时,其最大值发生于侧滑时,为 Z2中, ,侧滑时轮胎与地面1侧向附着系数,在计算中取 1.0,没有纵向力作用;1c)垂向力 Z2最大时,这发生在汽车以可能的高速通过不平路面时,其值为(Z2-gw)kd,kd是动载荷系数,这时没有纵向力和侧向力的作用。由于车轮承受的纵向力、侧向力值的大小受车轮与地面最大附着力的限制,即:22222Z= X +Y故纵向力 X2最大时不会有侧向力作用,而侧向力 Y2最大时也不会有纵向力作用。5.2.15.2.1 全浮式半轴的设计计算全浮式半轴的设

32、计计算本课题采用带有凸缘的全浮式半轴,其详细的计算校核如下: a)全浮式半轴计算载荷的确定 全浮式半轴只承受转矩,其计算转矩按下式进行:T=Temaxig1i0 (5-1)式中:差速器的转矩分配系数,对圆锥行星齿轮差速器可取0.6; ig1变速器 1 挡传动比; i0主减速比。已知:Temax430Nm;ig17.48; i06.33 ; =0.6计算结果: T=0.64307.486.33精选优质文档-倾情为你奉上专心-专注-专业 =12215N.m 在设计时,全浮式半轴杆部直径的初步选取可按下式进行: (5-33310(2.05 2.18)0.196 TdT2)式中 d半轴杆部直径,mm;

33、 T半轴的计算转矩,Nrn;半轴扭转许用应力,MPa。根据上式带入 T12215 Nm,得:32.50mmd33.85mm取:d=33mm给定一个安全系数 k=1.5d=kd =1.533 =50mm全浮式半轴支承转矩,其计算转矩为: (5-22LrRrTXrXr3)三种半轴的扭转应力由下式计算: (5-331610Td4)式中半轴的扭转应力,MPa;T一半轴的计算转矩,T=12215Nm;d半轴杆部直径,d=50mm。 将数据带入式(5-3) 、 (5-4)得:=528MPa半轴花键的剪切应力为 (5-310()/4bpBATzLbjDd 5)半轴花键的挤压应力为 (5-2/ )(4/ )(

34、103ABABpcdDdDLzT6)精选优质文档-倾情为你奉上专心-专注-专业式中 T半轴承受的最大转矩,T=12215Nm;DB半轴花键(轴)外径,DB=54mm;dA相配的花键孔内径,dA=50mm;z花键齿数;Lp花键工作长度,Lp=70mm;B花键齿宽,B=9mm;载荷分布的不均匀系数,取 0.75。 将数据带入式(5-5) 、 (5-6)得:=68Mpab=169MPac半轴的最大扭转角为 (5-310180GJTl7)式中 T半轴承受的最大转矩,T=12215Nm;l半轴长度,l=900mm;G材料的剪切弹性模量,MPa;J半轴横截面的极惯性矩, mm4。 将数据带入式(5-7)得

35、: = 8 半轴计算时的许用应力与所选用的材料、加工方法、热处理工艺及汽车的使用条件有关。当采用 40Cr,40MnB,40MnVB,40CrMnMo,40 号及 45 号钢等作为全浮式半轴的材料时,其扭转屈服极限达到 784MPa 左右。在保证安全系数在 1.31.6范围时,半轴扭转许用应力可取为490588MPa。对于越野汽车、矿用汽车等使用条件差的汽车,应该取较大的安全系数,这时许用应力应取小值;对于使用条件较好的公路汽车则可取较大的许用应力。当传递最大转矩时,半轴花键的剪切应力不应超过 71.05MPa;挤压应力不应该超过 196MPa,半轴单位长度的最大转角不应大于 8/m。 5.3

36、 半轴的结构设计及材料与热处理为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做得粗些,并适当地减小花键槽的深度,因此花键齿数必须相应地增加,通常取 10 齿(轿车半轴)至 18 齿(载货汽车半轴)。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。重型车半轴的杆部较粗,外端突缘也很大,当无较大锻造设备时可采用两端均为花键联接的结构,且取相同花键参数以简化工艺。在现代汽车半轴上,渐开线花键用得较广,但也有采用矩形或梯形花键的。半轴多采用含铬的中碳合金钢制造,如精选优质文档-倾情为你奉上专心-专注-专业40Cr,40CrMnMo,40CrMn

37、Si,40CrMoA,35CrMnSi,35CrMnTi 等。40MnB 是我国研制出的新钢种,作为半轴材料效果很好。半轴的热处理过去都采用调质处理的方法,调质后要求杆部硬度为 HB388444(突缘部分可降至 HB248)。近年来采用高频、中频感应淬火的口益增多。这种处理方法使半轴表面淬硬达 HRC5263,硬化层深约为其半径的 13,心部硬度可定为 HRC3035;不淬火区(突缘等)的硬度可定在HB248277 范围内。由于硬化层本身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理、滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高得十分显著

38、。由于这些先进工艺的采用,不用合金钢而采用中碳(40 号、45 号)钢的半轴也日益增多。6 驱动桥壳设计驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮作用在驱动车轮上的牵引力,制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥壳既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量桥壳还应结构简单、制造方便以利于降

39、低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。6.1 桥壳的结构型式桥壳的结构型式大致分为可分式a)可分式桥壳可分式桥壳的整个桥壳由一个垂直接合面分为左右两部分,每一部分均由一个铸件壳体和一个压入其外端的半轴套管组成。半轴套管与壳体用铆钉联接。在装配主减速器及差速器后左右两半桥壳是通过在中央接合面处的一圈螺栓联成一个整体。其特点是桥壳制造工艺简单、主减速器轴承支承刚度好。但对主减速器的装配、调整及维修都很不方便,桥壳的强度和刚度也比较低。过去这种所谓两段可分式桥壳见于轻型汽车,由于上述缺点现已很少采用。b

40、)整体式桥壳整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一整体的空心粱,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。精选优质文档-倾情为你奉上专心-专注-专业整体式桥壳按其制造工艺的不同又可分为铸造整体式、钢板冲压焊接式和钢管扩张成形式三种。6.2 桥壳的受力分析及强度计算我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况(与前述半轴强度计算的三种载荷工况相同) 。当牵引力或制动力最大时,桥

41、壳钢板弹簧座处危险端面的弯曲应力和扭转应力为: (6-1)vhvhMM=WW (6-2)TTT=W式中地面对车轮垂直反力在桥壳板簧座处危险端面引起的垂直平面内的弯矩,vM;hx2M =Fb 桥壳板簧座到车轮面的距离;b牵引力或制动力(一侧车轮上的)在水平平面内引起的弯矩,hMx2F;hx2M =Fb牵引或制动时,上述危险断面所受的转矩,;TTTx2rT =Fr、分别为桥壳危险断面垂直平面和水平面弯曲的抗弯截面系数;vWWh危险断面的抗扭截面系数。TW将数据带入式(6-2) 、 (6-3)得: =400 N/mm2 =250 N/mm2 桥壳许用弯曲应力为 300-500N/mm2,许用扭转应力

42、为 150-400N/mm2。可锻造桥壳取较小值,钢板冲压焊接桥壳取最大值。7 结论本课题设计的 YC1090 货车驱动桥,采用非断开式驱动桥,由于结构简单、主减速器造价低廉、工作可靠,可以被广泛用在各种中型载货汽车。设计介绍了后桥驱动的结构形式和工作原理,计算了差速器、主减速器以及半轴的结构尺寸,进行了强度校核,并绘制了有关零件图和装配图。本驱动桥设计结构合理,符合实际应用,具有很好的动力性和经济性,驱动桥总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。精选优质文档-倾情为你奉上专心-专注-专业但此设计过程仍有许多

43、不足,在设计结构尺寸时,有些设计参数是按照以往经验值得出,这样就带来了一定的误差。另外,在一些小的方面,由于时间问题,做得还不够仔细,恳请各位老师同学给予批评指正。参参 考考 文文 献献1 王望予.汽车设计M第4版.北京:机械工业出版社,2004.2 濮良贵,纪名刚.机械设计M第 8 版.北京:高等教育出版社,2006.5.2 陈家瑞. 汽车构造M. 北京:机械工业出版社,2003.3 汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.4 汽车工程手册编辑委员会.汽车工程手册M:基础篇.北京:人民交通出版社,2001.5 余志生. 汽车理论M. 北京:机械工业出版社, 1990.6 杨朝会,王丰元,马浩.基于有限元方法的载货汽车驱动桥壳分析J.农业装备与车辆工程.2006, (10):19-217 胡迪青,易建军,胡于进,李成刚.基于模块化的越野汽车驱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论