版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新版(北师大版)九年级数学上册知识点归纳(北师大版)第一章特殊平行四边形第二章一元二次方程第三章图形的相似第四章投影与视图第五章反比例函数第六章概率的进一步认识(八下前情回顾)平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。 平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。两组对边分别相等的四边形是平行四边形。一组对边平行且相等的四边形是平行四边形。两条对角线互相平分的四边形是平行四边形。平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直
2、线的距离相等。这个距离称为平行线之间的距离。第一章特殊平行四边形1菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。菱形是轴对称图形,每条对角线所在的直线都是对称轴。菱形的判别方法:一组邻边相等的平行四边形是菱形。对角线互相垂直的平行四边形是菱形。四条边都相等的四边形是菱形。2矩形的性质与判定矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。 矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)矩形的判定:有一个内角是
3、直角的平行四边形叫矩形(根据定义)。对角线相等的平行四边形是矩形。四个角都相等的四边形是矩形。推论:直角三角形斜边上的中线等于斜边的一半。3正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形:对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。弼翔教图3等腰梯形的性质:等腰梯形同一底上的两个内角相等,
4、对角线相等。同一底上的两个内角相等的梯形是等腰梯形。三角形的中位线平行于第三边,并且等于第三边的一半。夹在两条平行线间的平行线段相等。在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1认识一元二次方程只含有一个未知数的整式方程,且都可以化为+ c = O (a、b、C为常数,aWO)的形式,这样的方程叫一元二次方程。把a?+Ox + c = O (a、b、c为常数,aWO)称为一元二次方程的一般形式,a为二次项系数;b为一次项系数;c为常数项。2用配方法求解一元二次方程配方法 <即将其变为(X + 7)2=O的形式>配方法解一元二次方程的基本步骤:把方程化成一元二次方程
5、的一般形式:将二次项系数化成1;把常数项移到方程的右边;两边加上一次项系数的一半的平方;把方程转化成(X + Hl)2 = 0的形式:两边开方求其根。3用公式法求解一元二次方程b +公式法x = (注意在找abc时须先把方程化为一般形式) 2a4用四式分解法求解一元二次方程分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。(主要包括“提公因式”和“十字相乘”)5一元二次方程的根与系数的关系根与系数的关系:当b:-4ac>0时,方程有两个不等的实数根:当b:-4ac=0时,方程有两个相等的实数根:当b:-4ac<0时,方程无实数根。如果一元二次方程x2+x + c
6、= O的两根分别为%、X则有:K+x,=K-x,= 。aa一元二次方程的根与系数的关系的作用:(1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x八X:的对称式的值,特别注意以下公式:X; +S =(再+x,)2-2为招 ' (X 一&)2 =区+)2X x2 x1x2 一看 1= yj(xi +X2y -4XjX2(I 再 1 + 1占 I)2 =(X +X2)2 -2再占+21内占 IX; =(/ +4)3 -3中2(占+、2)其他能用X1 +z或为匕表达的代数式。(3)已知方程的两根X,、XJ可以构造一元二次方程:/一(即+看)1+为=0(4)已知两数&
7、;、义的和与积,求此两数的问题,可以转化为求一元二次方程炉(为+x2)x + x,x2 =0的根6应用一元二次方程在利用方程来解应用题时,主要分为两个步骤:设未知数(在设未知数时,大多数情况只要设问题为 X:但也有时也须根据已知条件及等量关系等诸多方面考虑);寻找等量关系(一般地,题目中会含有 一表述等量关系的句子,只须找到此句话即可根据其列出方程)。处理问题的过程可以进一步概括为:问题疆f方程慧.解答-8 -第三章图形的相似1成比例线段线段的比XL如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成一=.B n派2.四条线段a、
8、b、c、d中,如果a与b的比等于c与d的比,即g = ,,那么这四条线段a、b、c、d叫 b d做成比例线段,简称比例线段.X3.注意点:a:b二k,说明a是b的k倍;由于线段a、b的长度都是正数,所以k是正数;比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;除了 a二b之外,a:b¥b:a,3与2互为倒数;4C B图1b a比例的基本性质:若色=£,则ad二be;若ad=be,则qb db dm1f2平行线分线段成比例XL平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图2, 1J/ L/乙则理=些.二.黄金分割DE EF图2匕如图1,点
9、C把线段AB分成两条线段AC和BC,如果色£ =竺,那么称线段AB被点C黄金分割,点CAB AC叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.AC:AB =9二1 x 0.618 :1 2派2.黄金分割点是最优美、最令人赏心悦目的点.3相似多边形01. 一般地,形状相同的图形称为相似图形.X2.对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.匕在相似多边形中,最为简单的就是相似三角形.X2.对应角相等、对应边成比例的三角形叫做相似三比形.相似三角形对应边的比叫做相.似比.X3.全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角
10、形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.派4.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.派5.相似三角形周长的比等于相似比.派6.相似三角形而积的比等于相似比的平方.相似多边形的周长等于相似比;面积比等于相似比的平方.4探索三角形相似的条件 匕相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.两角对应相等;两边对应成比例,且夹角相等;三边对应成比例.一个锐角对应相等;两条边对应成比例:a.两直角边对应成比例;b,斜边和一直角边对应成比例.派2,平行线分
11、线段成比例定理:三条平行线截两条宜线,所得的对应线段成比例.BC4 R如图2, 1: / h/乙则= DE派3.平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.5相似三角形的判定定理的证明 6利用相似三角形测高 7相似三角形的性质8图形的位似第四章投影与视图A)三视图主视图一一从正面看到的图左视图一一从左面看到的图俯视图一一从上面看到的图画物体的三视图时,要符合如下原则:大小:长对正,高平齐,宽相等. 虚实:在画图时,看的见部分的轮廓通常画成实线,看不见部分的轮廓线通常画成虚线.B)投影 物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.
12、太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。 在同一时刻,物体高度与影子长度成比例.物体的三视图实际上就是该物体在某一平行光线(垂直于投影面的平行光线)下的平行投影.探照灯,手电筒,路灯,和台灯的光线可以看成是从一点出发的光线,像这样的光线所形成的投影称为中心投影皮影和手影都是在灯光照射下形成的影子.它们是中心投影。C)视点、视线、盲区的定义以及在生活中的应用。.眼睛所在的位置称为视点,.由视点发出的光线称为视线,.眼睛看不到的地方称为盲区第五章反比例函数知识点1反比例函数的定义k一般地,形如y = (k为常数,kwO)的函数称为反比例函数,它可以从以下几个方而来理解: x
13、(1)X是自变量,y是x的反比例函数:自变量x的取值范围是x工0的一切实数,函数值的取值范围是y H。;(3)比例系数kwO是反比例函数定义的一个重要组成部分:反比例函数有三种表达式:k y = ( k W 0 ), x丫二代“(kwO),xy = k (定值)(k工0):函数y = X (kwo)与x = E (kwo)是等价的,所以当y是X的反比例函数时,X也是y的反 xy比例函数。(k为常数,kwO)是反比例函数的一部分,当k=o时,y = -,就不是反比例函数了,由于反比 x例函数y = E (kWO)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定 X反比例函数
14、的表达式,反比例函数图像的位置和函数的增减性,是有反比例函数系数k的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出k的符号。如y =,在第一、第三史阳丽京反比例函数y = : (kwO)中比例系数k的绝对值|k|的几何意义。L如图所示,过双曲线上任一点P (x, y)分别作x轴、y轴的垂线,E、F分别为垂足,L/望方E &广则 N =网=W- 3 = PFPE = S 矩形SPF(kkk反比例函数y = ( k工0 )中,|k|越大,双曲线y =越远离坐标原点:网越小,双曲线y =越 XXX靠近坐标原点。双曲线是中心对称图形,对称中心是坐标原点:双曲线又是轴对称图形,对称轴是直线y=x和直线厂第六章概率的进一步认识用树状图或表格求概率相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。必然事件发生的概率为1:不可能事件发生的概率为0:不确定事件发生的概率在0与1之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水果超市加盟协议
- 商业广场施工合同
- 《理财综合分析》课件
- 环境安全评价瓦工施工合同篇
- 教育机构总经理招聘合同模板
- 游泳馆教练岗位合同
- 文化创意合同管理细则
- 通讯院墙施工合同
- 金融服务系统招投标合同
- 企业活动电视租赁合同
- 铁艺栏杆检验批
- 羽毛球英语版介绍PPT
- (新版)直播销售员理论知识考试题库(含答案)
- 中考化学复习方法和经验分享-课件
- 中华人民共和国文物保护法学习课程PPT
- 人教版数学二年级上册期末综合素质评价(一)(含答案)
- 云应用系统开发技术PPT完整全套教学课件
- 表格式部编版语文六年级上册全册(教案)
- 国开2023年春《人文英语4》机考网考期末复习资料参考答案
- DB3716-T 27-2023乡镇级应急物资配备指南
- 员工食堂承包合同、考核细则、考核评分表
评论
0/150
提交评论