确定二次函数的表达式_第1页
确定二次函数的表达式_第2页
确定二次函数的表达式_第3页
确定二次函数的表达式_第4页
确定二次函数的表达式_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3 3 确定二次函数的表达式确定二次函数的表达式北师版 九年级下册 如图是一名学生推铅球时,铅球行进高度如图是一名学生推铅球时,铅球行进高度y(m)与水平距离与水平距离x(m)的图象,你能求出其表达式吗?的图象,你能求出其表达式吗?情境导入1423290 xy思考探究思考探究 确定二次函数的表达式需要几个条件?确定二次函数的表达式需要几个条件?与同伴进行交流与同伴进行交流.例例1 1 若二次函数图象过若二次函数图象过A(2,-4),B(0,2), A(2,-4),B(0,2), C(-1,2)C(-1,2)三点,求此函数的解析式。三点,求此函数的解析式。例例1 1 若二次函数图象过若二次函数图

2、象过A(2,-4),B(0,2), A(2,-4),B(0,2), C(-1,2)C(-1,2)三点求此函数的解析式。三点求此函数的解析式。解解:设二次函数表达式为设二次函数表达式为y=ax+bx+c 图象过图象过B(0,2) c=2 y=ax2+bx+2 图象过图象过A(2,-4),C(-1,2)两点两点 -4=4a+2b+2 2=a-b+2 解得解得 a=-1,b=-1 函数的解析式为:函数的解析式为: y=-x2-x+2解法解法2:(利用顶点式)(利用顶点式) 图象过图象过B(0,2), C(-1,2)两点,两点,可知其对称轴为可知其对称轴为x=可设解析式为可设解析式为y=a(x+ )2

3、+k A(2,-4),B(0,2)在图象上,在图象上, -4=a(2+ )2+k 2=a(0+ )2 +k a=-1,k= y=-(x+ )2+即即 y=-x2-x+21-2121212129494例例2 已知一个二次函数的图象经过点已知一个二次函数的图象经过点(4,-3),并且当,并且当x=3时有最大值时有最大值4,试确定这个二次函数的解析式。,试确定这个二次函数的解析式。解法解法1:(利用一般式)(利用一般式)设二次函数解析式为:设二次函数解析式为:y=ax2+bx+c (a0)由题意知由题意知 16a+4b+c = -3 = 3 = 4解方程组得:解方程组得: a= -7 b= 42 c

4、= -59 二次函数的解析式为:二次函数的解析式为:y= -7x2+42x-59 b-2a24ac-b4a解法解法2:(利用顶点式)(利用顶点式) 当当x=3时,有最大值时,有最大值4 顶点坐标为顶点坐标为(3,4) 设二次函数解析式为:设二次函数解析式为:y=a(x-3)2+4 函数图象过点(函数图象过点(4,- 3) a(4 - 3)2 +4 = - 3 a= -7 二次函数的解析式为:二次函数的解析式为: y= -7(x-3)2+4 例例3 二次函数二次函数y=ax2+bx+c的图象过点的图象过点A(0,5),B(5,0)两点,两点,它的对称轴为直线它的对称轴为直线x=3,求这个二次函数

5、的解析式。,求这个二次函数的解析式。解解: 二次函数的对称轴为直线二次函数的对称轴为直线x=3 设二次函数表达式为设二次函数表达式为 y=a(x-3)2+k 图象过点图象过点A(0,5),B(5,0)两点两点 5=a(0-3)2+k 0=a(5-3)2+k 解得:解得:a= 1 , k=-4 二次函数的二次函数的表达式表达式: y= (x-3)2-4 即即 y =x2-6x+5小结小结: 已知顶点坐标已知顶点坐标(h,k)或对称轴方程或对称轴方程x=h 时时 优先选用优先选用顶点式顶点式。解:(解:(交点式交点式)二次函数图象经过点二次函数图象经过点 (3,0),(-1,0)设二次函数表达式为

6、设二次函数表达式为 :y=a(x-3)(x+1) 函数图象过点函数图象过点(1,4) 4 =a (1-3)(1+1) 得得 a= -1 函数的表达式为:函数的表达式为: y= -(x-3)(x+1) = -x2+2x+3例例 已知二次函数图象经过点已知二次函数图象经过点 (1,4),(-1,0)和和(3,0)三点,三点,求二次函数的表达式。求二次函数的表达式。知道抛物线与知道抛物线与x轴的两个交点的坐轴的两个交点的坐标,选用交点式比较简便。标,选用交点式比较简便。其他解法:其他解法:(一般式一般式) 设二次函数解析式为设二次函数解析式为y=ax+bx+c 二次函数图象过点二次函数图象过点(1,

7、4),(-1,0)和和(3,0) a+b+c=4 a-b+c=0 9a+3b+c=0 解得:解得: a= -1 b=2 c=3 函数的解析式为:函数的解析式为:y= -x2+2x+3(顶点式)(顶点式) 解:解: 抛物线与抛物线与x轴相交两点轴相交两点(-1,0)和和(3,0) , (-1+3)/2 = 1 点点(1,4)为抛物线的顶点为抛物线的顶点 可设二次函数解析式为:可设二次函数解析式为: y=a(x-1)2+4 抛物线过点抛物线过点(-1, 0) 0=a(-1-1)2+4 得得 a= -1 函数的解析式为:函数的解析式为: y= -(x-1)2+4 =-x2+2x+3归纳:归纳: 在确

8、定二次函数表达式时在确定二次函数表达式时(1)若已知图象上三个非特殊点,常设一般)若已知图象上三个非特殊点,常设一般式式 ;(2)若已知二次函数顶点坐标或对称轴,常)若已知二次函数顶点坐标或对称轴,常设顶点式设顶点式 较为简便;较为简便;(3)若已知二次函数与)若已知二次函数与x轴的两个交点,常设轴的两个交点,常设交点式较为简单。交点式较为简单。1.请选择最优解法,求下列二次函数表达式。请选择最优解法,求下列二次函数表达式。(1)已知抛物线的顶点在原点,对称轴是已知抛物线的顶点在原点,对称轴是y轴,且经轴,且经过点过点 (-2,2),求此抛物线的表达式?),求此抛物线的表达式?(2)已知抛物线

9、的顶点在已知抛物线的顶点在y轴上轴上,且经过(且经过(-1,-3)和)和(2,6),求此抛物线的表达式?求此抛物线的表达式?运用新知运用新知顶点式顶点式21y =x2顶点式顶点式y=3x2-6(3)已知抛物线的顶点在已知抛物线的顶点在x轴上,对称轴是直线轴上,对称轴是直线x=1,且,且经过(经过(2,3),求此抛物线的表达式?),求此抛物线的表达式?(4)已知一个二次函数的图象经过原点,且过(已知一个二次函数的图象经过原点,且过(2,6),),(-1,3)求这个二次函数的表达式?)求这个二次函数的表达式?一般式,交点式一般式,交点式顶点式顶点式y=3(x-1)2y=2x2-x 2.如图,某建筑

10、的屋顶设计成横截面为抛物线如图,某建筑的屋顶设计成横截面为抛物线 (曲(曲 线线AOB)的薄壳屋顶它的拱宽)的薄壳屋顶它的拱宽AB为为6m,拱高,拱高CO为为 0.9m试建立适当的直角坐标系试建立适当的直角坐标系,并写出这段抛物线所对并写出这段抛物线所对应的二次函数表达式应的二次函数表达式? 解解:以线段以线段AB的中垂线为的中垂线为y轴轴,以过点以过点o且且与与y轴垂直的直线为轴垂直的直线为x轴轴,建立直角坐标系建立直角坐标系222ABAB = 6CB = 3,OC = 0.92B(3,-0.9)y = ax,-0.9 = a3a = -0.1y = -0.1x (-3x3) 代代入入中中因因此此这这段段抛抛物物线线对对应应的的二二次次函函数数表表示示式式为为设它的函数表达式为设它的函数表达式为: y=ax (a0) 通过上述问题的解决通过上述问题的解决,您能体会到求二次函您能体会到求二次函数表达式采用的一般方法是什么数表达式采用的一般方法是什么?(待定系数法)(待定系数法)1.1.若无坐标系若无坐标系, ,首先应建立适当的直角坐标系首先应建立适当的直角坐标系; ;2.2.设抛物线的表达式设抛物线的表达式; ;3.3.写出相关点的坐标写出相关点的坐标; ;4.4.列方程列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论