数学20章《一次函数》导学案_第1页
数学20章《一次函数》导学案_第2页
数学20章《一次函数》导学案_第3页
数学20章《一次函数》导学案_第4页
数学20章《一次函数》导学案_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、导学引领,树梁中学对标检测”尝试教学导学案 八年级上第二十章一次函数授课教师: 主备教师: 王继勇 审核校对:初四数学组【学习目标】(1) 理解具体问题中的数量关系及变化规律;(2) 了解常量、变量的意义;(3) 了解函数的概念及三种表示方法;(4) 掌握函数的自变量取值范围、会求出函数值;(5) 掌握一次函数及表达式; (6) 掌握一次函数的图象及性质;(7) 理解正比例函数;(8) 能根据一次函数的图象求二元一次方程组的近似解;(9)能用一次函数解决实际问题.【知识梳理】一、知识要点: 1、一次函数:形如y=kx+b (k0, k, b为常数)的函数。 注意:(1)k0,否则自变量x的最高

2、次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。3求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。 “待定系数法”的基本思想就是方程思想,就是把具有某

3、种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: 利用一次函数的定义 构造方程组。 利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向 。利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 利用题目已知条件直接构造方程 。 4、性质:(1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4求一次函数解析式的方法 求函数解析式的方法主要

4、有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。 “待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: 利用一次函数的定义 构造方程组。 利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向

5、 。利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 利用题目已知条件直接构造方程 。二、例题举例: 例1已知y=,其中=(k0的常数),与成正比例,求证y与x也成正比例。证明:与成正比例, 设=a(a0的常数), y=, =(k0的常数), y=·a=akx, 其中ak0的常数, y与x也成正比例。 例2已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, =-3x-1, =(3-)x, 是正比例函数; =-3x-1的图象经过第二、三

6、、四象限,随x的增大而减小; =(3-)x的图象经过第一、三象限,随x的增大而增大。 说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。 例3直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。 分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例 y=2x,y=2x+3的图象平行。 解:y=kx+b与y=5-4x平行, k=-4, y=kx+b与y=-3(x-6)=-3x

7、+18相交于y轴, b=18, y=-4x+18。 说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0, b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。 例4直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。 解:点B到x轴的距离为2, 点B的坐标为(0,±2), 设直线的解析式为y=kx±2, 直线过点A(-4,0), 0=-4k±2, 解得:k=±, 直线AB的解析式为y=x+2或y=-x-2. 说明:此例看起来很简单,但实际上隐

8、含了很多推理过程,而这些推理是求一次函数解析式必备的。 (1)图象是直线的函数是一次函数; (2)直线与y轴交于B点,则点B(0,); (3)点B到x轴距离为2,则|=2; (4)点B的纵坐标等于直线解析式的常数项,即b=; (5)已知直线与y轴交点的纵坐标,可设y=kx+, 下面只需待定k即可。 例5已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,AOB的面积为6平方单位,求正比例函数和一次函数的解析式。 分析:自画草图如下: 解:设正比例函数y=kx, 一次函数y=ax+b, 点B在第三象限,横坐标为-2, 设B(-2,),其中&l

9、t;0, =6, AO·|=6, =-2, 把点B(-2,-2)代入正比例函数y=kx,得k=1 把点A(-6,0)、B(-2,-2)代入y=ax+b, 得 解得: y=x, y=-x-3即所求。 说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示; (2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式AO·BD=6(过点B作BDAO于D)计算出线段长BD=2,再利用|=BD及点B在第三象限计算出=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可

10、能,点B可能在第二象限(-2,2),结果增加一组y=-x, y=(x+3). 例6已知正比例函数y=kx (k<0)图象上的一点与原点的距离等于13,过这点向x轴作垂线,这点到垂足间的线段和x轴及该图象围成的图形的面积等于30,求这个正比例函数的解析式。 分析:画草图如下:则OA=13,=30, 则列方程求出点A的坐标即可。 解法1:设图象上一点A(x, y)满足 解得:; 代入y=kx (k<0)得k=-, k=-. y=-x或y=-x。 解法2:设图象上一点A(a, ka)满足 由(2)得=-, 代入(1),得(1+)·(-)=. 整理,得60+169k+60=0.

11、解得 k=-或k=-. y=-x或y=-x. 说明:由于题目已经给定含有待定系数的结构式y=kx,其中k为待定系数,故解此例的关键是构造关于k的方程。此例给出的两个解法代表两种不同的思路:解法1是把已知条件先转化为求函数图象上一点的坐标,构造方程解出,再求k;解法2是引进辅助未知数a,利用勾股定理、三角形面积公式直接构造关于a、k的方程组,解题时消去a,求出k值。 例7在直角坐标系x0y中,一次函数y=x+的图象与x轴,y轴,分别交于A、B两点,点C坐标为(1,0),点D在x轴上,且BCD=ABD,求图象经过B、D两点的一次函数的解析式。 分析:由已知可得A点坐标(-3,0),B点坐标(0,)

12、,点C是确定的点(1,0),解题的关键是确定点D的坐标,由点D在x轴上,以BCD=ABD的条件,结合画草图可知BCD的边BC确定,顶点C确定,但边CD可以有两个方向,即点D可以在C点右侧,也可以在C点左侧,因此解此题要分类讨论。 解:点A、B分别是直线y=x+与x轴和y轴交点, A(-3,0),B(0,), 点C坐标(1,0)由勾股定理得BC=,AB=, 设点D的坐标为(x, 0), (1)当点D在C点右侧,即x>1时, BCD=ABD, BDC=ADB, BCDABD, = =- - - - = 8-22x+5=0 x1=, x2=, 经检验:x1=, x2=,都是方程的根。 x=,不

13、合题意,舍去。x=, D点坐标为(, 0)。 设图象过B、D两点的一次函数解析式为y=kx+b, 所求一次函数为y=-x+(2)若点D在点C左侧则x<1, 可证ABCADB, - - - - 8-18x-5=0 x1=-, x2=, 经检验x1=-, x2=,都是方程的根。 x2=不合题意舍去,x1=-, D点坐标为(-, 0), 图象过B、D(-, 0)两点的一次函数解析式为y=4x+综上所述,满足题意的一次函数为y=-x+或y=4x+. 例8已知:如图一次函数y=x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标。 解

14、:直线y=x-3与x轴交于点A(6,0),与y轴交于点B(0,-3), OA=6,OB=3, OAOB,CDAB, ODC=OAB, cotODC=cotOAB,即 OD=8. 点D的坐标为(0,8), 设过CD的直线解析式为y=kx+8,将C( 4,0)代入 0=4k+8, 解得 k=-2 直线CD:y=-2x+8, 由解得 点E的坐标为(,-) 说明:由于点E既在直线AB上,又在直线CD上,所以可以把两直线的解析式联立,构成二元一次方程组,通过解方程组求得。 一次函数基本题型过关卷题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,

15、纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A(m,n)在第二象限,则点(|m|,-n)在第_象限;2、 若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为_;3、 已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_,b=_;若A,B关于y轴对称,则a=_,b=_;若若A,B关于原点对称,则a=_,b=_;4、 若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_象限。题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对

16、值表示,点到y轴的距离用横坐标的绝对值表示; 任意两点的距离为; 若ABx轴,则的距离为; 若ABy轴,则的距离为; 点到原点之间的距离为1、 点B(2,-2)到x轴的距离是_;到y轴的距离是_;2、 点C(0,-5)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;3、 点D(a,b)到x轴的距离是_;到y轴的距离是_;到原点的距离是_;4、 已知点P(3,0),Q(-2,0),则PQ=_,已知点,则MQ=_; ,则EF两点之间的距离是_;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_;5、 两点(3,-4)、(5,a)间的距离是2,则a的值为_;6、 已知点A(0,2)

17、、B(-3,-2)、C(a,b),若C点在x轴上,且ACB=90°,则C点坐标为_.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b是常数,k0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。A与B成正比例óA=kB(k0)1、当k_时,是一次函数;2、当m_时,是一次函数;3、当m_时,是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为_;题型四、函数图像及其性质方法:函数图象性质经过象限变化规律y=kx+

18、b(k、b为常数,且k0)k0b0b=0b0k0b0b=0b0一次函数y=kx+b(k0)中k、b的意义: k(称为斜率)表示直线y=kx+b(k0) 的倾斜程度;b(称为截距)表示直线y=kx+b(k0)与y轴交点的 ,也表示直线在y轴上的 。 同一平面内,不重合的两直线 y=k1x+b1(k10)与 y=k2x+b2(k20)的位置关系:当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y轴上同一点。 特殊直线方程: X轴 : 直线 Y轴 : 直线 .与X轴平行的直线 与Y轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y5x+6,y的

19、值随x值的减小而_。2、对于函数, y的值随x值的_而增大。 3、一次函数 y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。4、直线y=(6-3m)x(2n4)不经过第三象限,则m、n的范围是_。5、已知直线y=kx+b经过第一、二、四象限,那么直线y=-bx+k经过第_象限。6、无论m为何值,直线y=x+2m与直线y=-x+4的交点不可能在第_象限。7、已知一次函数    (1)当m取何值时,y随x的增大而减小?    (2)当m取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b

20、的值,即可求解出一次函数y=kx+b(k0)的解析式。 已知是直线或一次函数可以设y=kx+b(k0); 若点在直线上,则可以将点的坐标代入解析式构建方程。1、若函数y=3x+b经过点(2,-6),求函数的解析式。2、直线y=kx+b的图像经过A(3,4)和点B(2,7),3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。4、一次函数的图像与y=2x-5平行且与x轴交于点(-2,0)求解析式。5、若一次函数y=kx+b的自变量x的取值范围是-2x6,相应的函数值的范围是-11y9,求

21、此函数的解析式。6、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。7、已知直线y=kx+b与直线y= -3x+7关于x轴对称,求k、b的值。8、已知直线y=kx+b与直线y= -3x+7关于原点对称,求k、b的值。题型六、平移方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k,则将平移后的点代入解析式求出b即可。直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。1. 直线y=5x-3向左平移2个单位得到直线 。2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=x向右平移2个单位得到直线 4. 直线y=向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线 7. 直线向上平移1个单位,再向右平移1个单位得到直线 。8. 直线向下平移2个单位,再向左平移1个单位得到直线_。9. 过点(2,-3)且平行于直线y=2x的直线是_ _。10. 过点(2,-3)且平行于直线y=-3x+1的直线是_.11把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是_;12直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论