钢的再结晶与控扎_第1页
钢的再结晶与控扎_第2页
钢的再结晶与控扎_第3页
钢的再结晶与控扎_第4页
钢的再结晶与控扎_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、钢的回复、再结晶与控扎控冷30%变形变形50变形变形70变形变形钢的冷变形组织钢的冷变形组织(1) (1) 纤维组织形成纤维组织形成 随着金属外形的变化,其内部晶粒的形状也发生相应的变化随着金属外形的变化,其内部晶粒的形状也发生相应的变化。 当变形量很大时,晶界变得模糊不清,各晶粒难以分辨,呈当变形量很大时,晶界变得模糊不清,各晶粒难以分辨,呈现出一片纤维状的条纹,称为现出一片纤维状的条纹,称为纤维组织纤维组织。 纤维组织使金属的性能具有明显的方向性,其纵向强度和塑纤维组织使金属的性能具有明显的方向性,其纵向强度和塑性高于横向。性高于横向。(2) (2) 亚结构的细化亚结构的细化 实际晶体中各

2、晶粒内存在着许实际晶体中各晶粒内存在着许多尺寸很小、位向差也很小的多尺寸很小、位向差也很小的亚结亚结构构,塑性变形前,铸态金属的亚结,塑性变形前,铸态金属的亚结构约为构约为 102m,塑性变形后,亚结,塑性变形后,亚结构直径将构直径将细化细化到到110-2m。 变形晶粒由许多胞块组成,这变形晶粒由许多胞块组成,这种亚结构称为种亚结构称为形变亚晶形变亚晶或或形变胞形变胞。各胞块之间存在着微小的位向差,各胞块之间存在着微小的位向差,不超过不超过2,胞壁堆积有大量的位,胞壁堆积有大量的位错,而胞内体积中位错密度很低,错,而胞内体积中位错密度很低,约为胞壁的约为胞壁的1/4,胞壁的厚度约为胞,胞壁的厚

3、度约为胞块的块的1/5。 5050变形变形3030变形变形70变形 变形量变形量,则胞块数量,则胞块数量,尺寸,尺寸,胞块的位向差,胞块的位向差,且其形,且其形状随晶粒的形状改变而变化,均沿着变形方向逐渐拉长。状随晶粒的形状改变而变化,均沿着变形方向逐渐拉长。 形变亚结构是在塑性变形过程中形变亚结构是在塑性变形过程中形成的,在切应力的作用下位错源产形成的,在切应力的作用下位错源产生的生的大量位错大量位错沿着滑移面运动时,沿着滑移面运动时,堆堆积和交割积和交割形成形成缠结缠结。 形变亚结构的出现对滑移过程的形变亚结构的出现对滑移过程的进行有巨大的阻碍作用,可使金属的进行有巨大的阻碍作用,可使金属

4、的变形抗力显著升高,是产生加工硬化变形抗力显著升高,是产生加工硬化的主要原因之一。的主要原因之一。(3) 形成变形织构形成变形织构 当变形量很大时,各晶粒的取向会大致趋于一致。这种当变形量很大时,各晶粒的取向会大致趋于一致。这种由于塑性变由于塑性变形的结果而使晶粒具有择优取向的组织形的结果而使晶粒具有择优取向的组织叫做叫做变形织构变形织构。丝织构丝织构: 在拉拔时形成,其特征是在拉拔时形成,其特征是各各晶粒的晶粒的某一晶向某一晶向与拉拔方向平行与拉拔方向平行或接近平行或接近平行。板织构板织构: 在轧制时形成,其特征是在轧制时形成,其特征是各晶粒的各晶粒的某一晶面某一晶面平行或接平行或接近平行于

5、轧制平面,而某一晶近平行于轧制平面,而某一晶向平行或接近平行于轧制方向向平行或接近平行于轧制方向。(4)形成加工硬化)形成加工硬化 随着变形程度的增加,金属的强度、硬度显著升高,而塑性、随着变形程度的增加,金属的强度、硬度显著升高,而塑性、韧性显著下降韧性显著下降,这一现象称为,这一现象称为加工硬化加工硬化。产生加工硬化的产生加工硬化的原因原因,目前普遍认为与,目前普遍认为与位错的运动和交互作用位错的运动和交互作用有关有关,随着塑性变形的进行,位错的密度不断增加,因此,位错运,随着塑性变形的进行,位错的密度不断增加,因此,位错运动时相互交割加剧,产生位错塞积群、割阶、缠结网等障碍,阻碍动时相互

6、交割加剧,产生位错塞积群、割阶、缠结网等障碍,阻碍位错的进一步运动,引起变形抗力增加,因此提高了金属强度。位错的进一步运动,引起变形抗力增加,因此提高了金属强度。(5 5)形成三类内应力)形成三类内应力 金属在塑性变形过程中外力所作的功大部分转变为热能,一小部分金属在塑性变形过程中外力所作的功大部分转变为热能,一小部分(10%10%)保留在金属内部,形成残余应力和点阵畸变。)保留在金属内部,形成残余应力和点阵畸变。宏观内应力宏观内应力(第一类内应力)(第一类内应力) 由金属工件或材料由金属工件或材料各部分间各部分间的宏观变形不均匀而引起的,其平衡范的宏观变形不均匀而引起的,其平衡范围是物体的整

7、个体积。如冷拉圆钢,由于外圆变形小,中间变形大,所以围是物体的整个体积。如冷拉圆钢,由于外圆变形小,中间变形大,所以表面受拉应力,心部受压应力。表面受拉应力,心部受压应力。微观内应力微观内应力(第二类内应力)(第二类内应力) 由各晶粒或由各晶粒或各亚晶粒之间各亚晶粒之间的变形不均匀而产生的的变形不均匀而产生的,其平衡范围是几其平衡范围是几个晶粒或几个亚晶。个晶粒或几个亚晶。点阵畸变点阵畸变(第三类内应力)(第三类内应力) 由金属在塑性变形中产生大量由金属在塑性变形中产生大量点阵缺陷点阵缺陷(如位错、空位、间隙原子(如位错、空位、间隙原子等),使点阵中的一部分原子偏离其平衡位置,而等),使点阵中

8、的一部分原子偏离其平衡位置,而造成的晶格畸变造成的晶格畸变。其作用范围更小,在几十至几百纳米范围内,它使金属的强度、硬度升高,其作用范围更小,在几十至几百纳米范围内,它使金属的强度、硬度升高,而塑性和抗腐蚀性下降。而塑性和抗腐蚀性下降。变形金属所吸收的能量的绝大部分(变形金属所吸收的能量的绝大部分(8090%8090%)消耗于点阵畸变。)消耗于点阵畸变。金属的变形状态与稳定性金属的变形状态与稳定性金属在塑性变形时消耗大量的能量,其中绝大部分转变金属在塑性变形时消耗大量的能量,其中绝大部分转变成热而散失,一小部分(百分之几至百分之十几)以增加晶成热而散失,一小部分(百分之几至百分之十几)以增加晶

9、体缺陷所引起的体缺陷所引起的畸变能畸变能和由于变形不均匀所引起的和由于变形不均匀所引起的弹性应弹性应变能变能的形式储存于金属内部,称为的形式储存于金属内部,称为储存能储存能。由于储存能的存在,使塑性变形后的金属材料的自由能由于储存能的存在,使塑性变形后的金属材料的自由能升高,使其在热力学上处于不稳定的升高,使其在热力学上处于不稳定的亚稳状态亚稳状态,它们有自,它们有自发地恢复到变形前低自由能、稳定状态的趋势。发地恢复到变形前低自由能、稳定状态的趋势。在常温下,由于原子的活动能力很小,原子的扩散速度在常温下,由于原子的活动能力很小,原子的扩散速度太慢,这种变化极为缓慢。如果太慢,这种变化极为缓慢

10、。如果温度温度升高,金属原子具有升高,金属原子具有足够的活动能力,冷变形金属就会由亚稳状态向稳定状态转足够的活动能力,冷变形金属就会由亚稳状态向稳定状态转变,从而引起一系列组织和性能的变化,变,从而引起一系列组织和性能的变化,储存能就是这一系储存能就是这一系列变化的驱动力列变化的驱动力。形变金属在退火过程中显微组织的变化形变金属在退火过程中显微组织的变化回复,再结晶,晶粒长大过程示意图回复,再结晶,晶粒长大过程示意图变形金属在退火过程中的性能变化变形金属在退火过程中的性能变化回复阶段回复阶段再结晶阶段再结晶阶段内应力内应力第一类内应力消除,第一类内应力消除,第二、三类内应力部分消除第二、三类内

11、应力部分消除第一、二、三类第一、二、三类内应力完全消除内应力完全消除强度、硬度强度、硬度略有下降略有下降显著下降显著下降塑性塑性略有提高略有提高大大提高大大提高电阻电阻显著变化显著变化显著变化显著变化回复回复: : 指经冷塑性变形的金属在加热时,在光学显指经冷塑性变形的金属在加热时,在光学显微组织发生改变以前(即再结晶晶粒形成以前)所产生微组织发生改变以前(即再结晶晶粒形成以前)所产生的某些亚结构和性能的变化过程的某些亚结构和性能的变化过程。将冷变形金属加热到不高的温度,变形金属的显微组织无显著将冷变形金属加热到不高的温度,变形金属的显微组织无显著变化(晶粒仍保持纤维状或扁平状的变形组织),此

12、时,变化(晶粒仍保持纤维状或扁平状的变形组织),此时,金属的机金属的机械性能(强度、硬度、塑性)变化不大,但某些物理、化学性能发械性能(强度、硬度、塑性)变化不大,但某些物理、化学性能发生明显变化生明显变化,如电阻显著减小,抗应力腐蚀能力提高,第一类内应,如电阻显著减小,抗应力腐蚀能力提高,第一类内应力基本消除。力基本消除。 在回复初期,变化较大,随在回复初期,变化较大,随后就逐渐变慢,当达到一个极限后就逐渐变慢,当达到一个极限值后,回复也就停止了。值后,回复也就停止了。在每一个温度,回复的程度在每一个温度,回复的程度大多有一个极限值,温度越高,大多有一个极限值,温度越高,这个极限值越大,同时

13、达到这个这个极限值越大,同时达到这个极限值所需的时间越短。达到极极限值所需的时间越短。达到极限值后,进一步延长退火时间,限值后,进一步延长退火时间,没有多大实际意义。没有多大实际意义。回复动力学回复动力学 回复的程度是回复的程度是温度温度和和时间时间的函数,温度越高,回复的程度越大;的函数,温度越高,回复的程度越大;当温度一定时,回复的程度随时间的延长而逐渐增加。当温度一定时,回复的程度随时间的延长而逐渐增加。经拉伸变形的纯铁在不同温度退火经拉伸变形的纯铁在不同温度退火时屈服强度的回复动力学曲线时屈服强度的回复动力学曲线回复机理回复机理 回复是回复是点缺陷点缺陷和和位错位错在加热时发生运动,从

14、而改变它们的组在加热时发生运动,从而改变它们的组态分布和数量的过程。回复阶段要发生以下组织变化:态分布和数量的过程。回复阶段要发生以下组织变化:点缺陷及点缺陷群的消除点缺陷及点缺陷群的消除 在低温加热时,点缺陷主要是在低温加热时,点缺陷主要是空位空位比较容易移动,它们可以移至晶比较容易移动,它们可以移至晶界或位错处而消失,也可以聚合起来形成空位对、空位群,还可以和间界或位错处而消失,也可以聚合起来形成空位对、空位群,还可以和间隙原子作用而消失,结果使点缺陷密度明显下降。隙原子作用而消失,结果使点缺陷密度明显下降。 点缺陷变化对电阻率较敏感,而对机械性能不敏感,故电阻率显著点缺陷变化对电阻率较敏

15、感,而对机械性能不敏感,故电阻率显著下降,而机械性能不变化。下降,而机械性能不变化。位错的相消和重新排列位错的相消和重新排列 当加热温度较高时,不仅原子有很大的活动能力,而且位错也开始当加热温度较高时,不仅原子有很大的活动能力,而且位错也开始运动。处于同一滑移面上的运动。处于同一滑移面上的异号位错可以相互吸引而抵消异号位错可以相互吸引而抵消,使位错密度,使位错密度降低,降低,缠结中的位错也可以重新组合缠结中的位错也可以重新组合,亚晶粒也会长大亚晶粒也会长大。多边化或亚晶的形成和长大多边化或亚晶的形成和长大 当加热温度更高时,位错不仅可以当加热温度更高时,位错不仅可以滑移滑移,而且可以而且可以攀

16、移攀移(位错沿垂直滑移面的方向运(位错沿垂直滑移面的方向运动),分布于滑移面上的同号刃型位错互相排动),分布于滑移面上的同号刃型位错互相排斥,并按照某种规律沿垂直于滑移面的方向排斥,并按照某种规律沿垂直于滑移面的方向排列成位错墙,构成小角亚晶界,在变形晶粒中列成位错墙,构成小角亚晶界,在变形晶粒中形成许多较完整的小晶块,称为形成许多较完整的小晶块,称为回复亚晶回复亚晶,这,这一过程称为一过程称为多边化多边化。 多边化过程实质多边化过程实质上是位错从高能态的上是位错从高能态的混乱排列向低能态的混乱排列向低能态的规则排列规则排列移动的过移动的过程。程。冷变形状态冷变形状态0.1h0.1h回复回复5

17、0h50h回复回复300h300h回复回复回复过程中亚结构的变化回复过程中亚结构的变化a ab bc cd d当冷变形金属的加热温度高于回复温度时,当冷变形金属的加热温度高于回复温度时,在变形组织的基在变形组织的基体上产生新的无畸变的晶核,并迅速长大形成等轴晶粒,逐渐体上产生新的无畸变的晶核,并迅速长大形成等轴晶粒,逐渐取代变形组织,性能也发生了明显的变化,并恢复到完全软化取代变形组织,性能也发生了明显的变化,并恢复到完全软化状态状态,这个过程称为,这个过程称为再结晶再结晶。 再结晶的再结晶的驱动力驱动力也是冷变形产生的储存能。也是冷变形产生的储存能。 强度、硬度显著下降,塑性和韧性显著提高,

18、内应力、加强度、硬度显著下降,塑性和韧性显著提高,内应力、加工硬化状态消除,金属又重新复原到冷变形之前的状态工硬化状态消除,金属又重新复原到冷变形之前的状态(1 1) 再结晶晶核的形成与长大再结晶晶核的形成与长大 再结晶时通常是在变形金属的能量较高的区域(如再结晶时通常是在变形金属的能量较高的区域(如晶界、孪晶界晶界、孪晶界、夹杂物周围、夹杂物周围)优先形核。)优先形核。亚晶长大形核机制亚晶长大形核机制 在在大变形度大变形度下发生,有两种下发生,有两种可能:可能: 亚晶移动形核亚晶移动形核。靠某局部位。靠某局部位错密度高的亚晶界移动,吞并相错密度高的亚晶界移动,吞并相邻变形基体和亚晶而成长为晶

19、核。邻变形基体和亚晶而成长为晶核。 亚晶合并形核亚晶合并形核。相邻亚晶粒。相邻亚晶粒某边界上位错攀移和滑移到周围某边界上位错攀移和滑移到周围晶界或亚晶界,使原亚晶界消失,晶界或亚晶界,使原亚晶界消失,经原子扩散和调整,导致两个或经原子扩散和调整,导致两个或更多亚晶粒取向一致,合并成大更多亚晶粒取向一致,合并成大晶粒,构成大角度晶界,所包围晶粒,构成大角度晶界,所包围的无畸变晶体成为晶核。的无畸变晶体成为晶核。晶界突出形核机制晶界突出形核机制 多发生在多发生在变形度较小变形度较小的金属中,又称凸出形核。的金属中,又称凸出形核。 由于变形度小,故金属的变形很不均匀,回复后,亚晶粒大小也不同。由于变

20、形度小,故金属的变形很不均匀,回复后,亚晶粒大小也不同。再结晶时,再结晶时,大角度晶界大角度晶界中某一段就会向亚晶粒细小,位错密度高的一侧中某一段就会向亚晶粒细小,位错密度高的一侧弓出,所扫过的区域位错密度下降,称为无畸变的晶体,即成为再结晶晶弓出,所扫过的区域位错密度下降,称为无畸变的晶体,即成为再结晶晶核。核。再结晶晶核的长大再结晶晶核的长大 再结晶核心无论以何种方式形成,都可借助大角度晶界向畸变区移再结晶核心无论以何种方式形成,都可借助大角度晶界向畸变区移动而长大,晶核长大时,驱动力为动而长大,晶核长大时,驱动力为无畸变的新晶粒与周围基体的畸变能无畸变的新晶粒与周围基体的畸变能差差。 变

21、形晶粒完全被新生的、无畸变的再结晶晶粒所取代时,再结晶结变形晶粒完全被新生的、无畸变的再结晶晶粒所取代时,再结晶结束,此时的晶粒大小为再结晶的束,此时的晶粒大小为再结晶的初始晶粒初始晶粒。 (2)再结晶温度及影响因素)再结晶温度及影响因素再结晶温度再结晶温度: 经大量变形(变形度经大量变形(变形度70%70%)的金属,在)的金属,在约约1h 1h 保温时间内,能够完成再结晶(再结晶体积分数保温时间内,能够完成再结晶(再结晶体积分数95%95%)的最低加热温度)的最低加热温度。 再结晶前后晶格类型不变,化学成分不变,所以再结晶过程不是相再结晶前后晶格类型不变,化学成分不变,所以再结晶过程不是相变

22、,再结晶温度不是一个物理常数,而是变,再结晶温度不是一个物理常数,而是一个温度范围一个温度范围。 大量实验统计结果表明,工业纯金属再结晶开始温度(大量实验统计结果表明,工业纯金属再结晶开始温度(T再再)与其)与其熔点之间存在如下近似关系:熔点之间存在如下近似关系:T再再=(0.250.4)Tm影响再结晶温度的因素影响再结晶温度的因素 : :变形程度变形程度冷变形程度冷变形程度,储存能,储存能,再结晶的驱动力,再结晶的驱动力,再结晶温度,再结晶温度。当变形增加到一定值后,再结晶温度趋于一稳定值。当变形增加到一定值后,再结晶温度趋于一稳定值。金属的纯度金属的纯度 金属的纯度金属的纯度,再结晶温度,

23、再结晶温度。金属中的微量杂质或合金元素,特别是高熔点元素,会阻碍原子的扩金属中的微量杂质或合金元素,特别是高熔点元素,会阻碍原子的扩散、位错运动或晶界迁移,因此能显著提高金属的再结晶温度。散、位错运动或晶界迁移,因此能显著提高金属的再结晶温度。原始晶粒尺寸原始晶粒尺寸原始晶粒原始晶粒,再结晶温度,再结晶温度。由于细晶粒金属的变形抗力较大,冷变形后的金属储存能较高。由于细晶粒金属的变形抗力较大,冷变形后的金属储存能较高。加热时间和加热速度加热时间和加热速度 加热保温时间加热保温时间,原子扩散移动越充分,越有利于再结晶晶粒的形核,原子扩散移动越充分,越有利于再结晶晶粒的形核和生长,使再结晶温度和生

24、长,使再结晶温度 。因再结晶过程需要一定的时间来完成,所以加热速度因再结晶过程需要一定的时间来完成,所以加热速度会使再结晶温会使再结晶温度度 ;若加热速度;若加热速度 ,变形金属在再结晶之前产生回复,使储存能降低,变形金属在再结晶之前产生回复,使储存能降低,再结晶驱动力减小,也会使再结晶温度,再结晶驱动力减小,也会使再结晶温度 。(3 3)再结晶晶粒大小的控制)再结晶晶粒大小的控制再结晶后,金属性能发生重大变化,但并不意味与变形前的金属完全再结晶后,金属性能发生重大变化,但并不意味与变形前的金属完全相同。金属性能主要决定于再结晶晶粒大小相同。金属性能主要决定于再结晶晶粒大小 G/NG/N。变

25、形 量 很变 形 量 很小时,储存能小时,储存能也很小,不足也很小,不足以引起再结晶以引起再结晶,晶粒度不会,晶粒度不会改变。改变。当变形量达到某当变形量达到某一数值(一数值(210%210%)时,再结晶的晶粒时,再结晶的晶粒特别粗大特别粗大,此变形此变形量称为量称为临界变形量临界变形量。此时变形量较小,此时变形量较小,N N较低,较低,G/NG/N值较值较大。大。变形量大于临界变形量后,晶粒逐变形量大于临界变形量后,晶粒逐渐细化,变形量越大,晶粒越细小。渐细化,变形量越大,晶粒越细小。随变形量的随变形量的,储存能,储存能,N N和和GG都都,但,但N N的增加大于的增加大于GG的增加。的增加

26、。当变形量达当变形量达到一定程度后,到一定程度后,再结晶晶粒大小再结晶晶粒大小基本保持不变。基本保持不变。对 于 某 些对 于 某 些金属和合金,金属和合金,当变形度相当当变形度相当大时,再结晶大时,再结晶晶粒又会重新晶粒又会重新出现粗化现象出现粗化现象,这是,这是二次再二次再结晶结晶造成的。造成的。变形程度变形程度原始晶粒尺寸原始晶粒尺寸 金属的原始晶粒尺寸金属的原始晶粒尺寸,晶界面积,晶界面积,再结晶的形核率,再结晶的形核率,再,再结晶后的晶粒尺寸结晶后的晶粒尺寸。杂质与合金元素杂质与合金元素 金属中的杂质与合金元素一方面增加变形金属的储存能,金属中的杂质与合金元素一方面增加变形金属的储存

27、能,另一方面障碍晶界的移动,起到细化晶粒的作用。另一方面障碍晶界的移动,起到细化晶粒的作用。变形温度变形温度 变形温度变形温度,回复程度,回复程度,变形金属的储存能,变形金属的储存能,再结晶晶粒再结晶晶粒。退火温度退火温度 退火温度退火温度,再结晶晶粒尺寸,再结晶晶粒尺寸。热形变过程中奥氏体的再结晶行为热形变过程中奥氏体的再结晶行为 当钢在高温奥氏体状态下形变时,其当钢在高温奥氏体状态下形变时,其流变应力先升高流变应力先升高到最大,然后降低到恒定状态到最大,然后降低到恒定状态。在应力峰左侧的应变范围。在应力峰左侧的应变范围内,内,动态回复动态回复在起作用;而在恒定状态范围内,则是在起作用;而在

28、恒定状态范围内,则是动态动态再结晶再结晶在起作用。在起作用。 应力应力应变曲线应变曲线三种静态复原过程:即静态回复、静态再结晶和亚动态三种静态复原过程:即静态回复、静态再结晶和亚动态( (准动态准动态) )再结晶。再结晶。 应变的软化面积对每种机理的贡献的依存关系应变的软化面积对每种机理的贡献的依存关系l- l-静态回复;静态回复;2-2-准动态再结晶;准动态再结晶;3-3-经典再结晶经典再结晶( (静态静态) ) 发生动态再结晶所必需的最低形变量称为动态再结晶的发生动态再结晶所必需的最低形变量称为动态再结晶的临临界形变量界形变量,以,以 c c表示。表示。 c c几乎与真应力几乎与真应力-

29、-真应变曲线上应力峰值真应变曲线上应力峰值所对应的应变量所对应的应变量 p p相等,精确地讲相等,精确地讲 c c0.830.83p p, p p的大小与钢的的大小与钢的奥氏体成分和形变条件奥氏体成分和形变条件( (形变温度、形变速度形变温度、形变速度) )有关。有关。 t t是达到是达到稳态稳态时的应变量。时的应变量。由动态再结晶产生核心到由动态再结晶产生核心到全部完成一轮再结晶所需要的全部完成一轮再结晶所需要的形变量用形变量用 r r表示,表示, r r可能大于可能大于 c c,也可能小于,也可能小于 c c 。再结晶的三个阶段再结晶的三个阶段第一阶段:随着形变量增加形变抗力增加,直到达到

30、最大值。第一阶段:随着形变量增加形变抗力增加,直到达到最大值。金属发生塑性形变,位错密度金属发生塑性形变,位错密度不断增加,从原始退火状态时的不断增加,从原始退火状态时的10108 810109 9/mm/mm2 2达到屈服极限时的达到屈服极限时的10109 910101010/mm/mm2 2,以后随着形变量增大位错,以后随着形变量增大位错密度继续增加,这就是材料的加工硬化,造成密度继续增加,这就是材料的加工硬化,造成形变应力不断增加达到峰值形变应力不断增加达到峰值。另一方面,材料在高温下形变中产生的位错能够在热加工过程中通过另一方面,材料在高温下形变中产生的位错能够在热加工过程中通过交滑移

31、和攀移等方式运动,使部分位错消失,部分重新排列,造成奥氏体交滑移和攀移等方式运动,使部分位错消失,部分重新排列,造成奥氏体的回复。当位错重新排列发展到一定程度,形成清晰的亚晶界,称为动态的回复。当位错重新排列发展到一定程度,形成清晰的亚晶界,称为动态多边形化。奥氏体的动态回复和动态多边形化都使多边形化。奥氏体的动态回复和动态多边形化都使材料软化材料软化。由于位错的消失速度与位错密度绝对值有关。因此当形变量逐渐增大由于位错的消失速度与位错密度绝对值有关。因此当形变量逐渐增大时,位错密度也增大,位错消失速度也随之增大,反映在真应力真应变时,位错密度也增大,位错消失速度也随之增大,反映在真应力真应变

32、曲线上曲线上随着形变量加大,加工硬化速度减弱随着形变量加大,加工硬化速度减弱,但是总的趋向在第一阶段加,但是总的趋向在第一阶段加工硬化还是超过动态软化;因此随形变量增加形变应力还是不断增加的。工硬化还是超过动态软化;因此随形变量增加形变应力还是不断增加的。 第二阶段:动态软化抵消不了加工硬化,随着形变量的增加金属内部畸变第二阶段:动态软化抵消不了加工硬化,随着形变量的增加金属内部畸变能不断升高,畸变能达到一定程度后在奥氏体中将发生另一种转变能不断升高,畸变能达到一定程度后在奥氏体中将发生另一种转变动动态再结晶。态再结晶。动态再结晶的发生与发展使更多的位错消失,材料的形变应力很快下动态再结晶的发

33、生与发展使更多的位错消失,材料的形变应力很快下降降。随着形变的继续进行,在热加工过程中不断形成再结晶核心并继续成。随着形变的继续进行,在热加工过程中不断形成再结晶核心并继续成长直到完成一轮再结晶,形变应力降到最低值。从动态再结晶开始,形变长直到完成一轮再结晶,形变应力降到最低值。从动态再结晶开始,形变应力开始下降,直到一轮再结晶全部完成并与加工硬化相平衡,形变应力应力开始下降,直到一轮再结晶全部完成并与加工硬化相平衡,形变应力不再下降为止,形成了真应力真应变曲线的第二阶段。不再下降为止,形成了真应力真应变曲线的第二阶段。动态再结晶是在热形变过程中发展的,即在动态再结动态再结晶是在热形变过程中发

34、展的,即在动态再结晶形核长大的同时持续进行形变的,这样由再结晶形成的晶形核长大的同时持续进行形变的,这样由再结晶形成的新晶粒又发生了形变,产生了加工硬化,富集了新的位错,新晶粒又发生了形变,产生了加工硬化,富集了新的位错,并且开始了新的软化过程并且开始了新的软化过程( (动态回复甚至动态再结晶动态回复甚至动态再结晶) )。因此。因此就整个奥氏体来说,就整个奥氏体来说,任一时刻在金属内部总存在着形变量任一时刻在金属内部总存在着形变量由零到由零到 c c的一系列晶粒的一系列晶粒,也就是说动态再结晶的发生就奥,也就是说动态再结晶的发生就奥氏体的整体来看并不能完全消除全部的加工硬化。氏体的整体来看并不

35、能完全消除全部的加工硬化。反映在真应力真应变曲线上,就是在反映在真应力真应变曲线上,就是在发生了动态再发生了动态再结晶后,金属材料的形变应力仍然高于原始状态结晶后,金属材料的形变应力仍然高于原始状态( (即退火状即退火状态态) )的形变应力。的形变应力。第三阶段():当第一轮动态再结晶完成以后,应力达到稳定值,形变第三阶段():当第一轮动态再结晶完成以后,应力达到稳定值,形变量虽不断增加而应力基本不变,呈稳态形变。量虽不断增加而应力基本不变,呈稳态形变。 当当 c cr r时发生时发生连续动态再结晶连续动态再结晶。动。动态再结晶发生后,随着形变的继续,一态再结晶发生后,随着形变的继续,一方面再

36、结晶继续发展,另一方面已发生方面再结晶继续发展,另一方面已发生动态再结晶的晶粒又承受新的形变,这动态再结晶的晶粒又承受新的形变,这两个过程同时在进行着;由于两个过程同时在进行着;由于 c cr r时发生时发生不连续动态再结晶不连续动态再结晶。由于由于 r r较小,一旦动态再结晶发生后不需较小,一旦动态再结晶发生后不需要太大的形变量,奥氏体就全部完成了要太大的形变量,奥氏体就全部完成了第一轮动态再结晶。由于第一轮动态再结晶。由于 c cr r,当第一,当第一轮再结晶全部完成时已再结晶的晶粒内轮再结晶全部完成时已再结晶的晶粒内新承受的形变量都还达不到新承受的形变量都还达不到 c c,因而还不,因而

37、还不能立即发生第二轮动态再结晶,只有再能立即发生第二轮动态再结晶,只有再继续形变使晶粒内的形变量达到继续形变使晶粒内的形变量达到cc,第,第二轮动态再结晶才开始发生。二轮动态再结晶才开始发生。在两轮再结晶之间,由于动态回复抵消不了加工硬化,应力值就要上在两轮再结晶之间,由于动态回复抵消不了加工硬化,应力值就要上升升,因此真应力真应变曲线上出现波浪形式,这种情况下动态再结晶是,因此真应力真应变曲线上出现波浪形式,这种情况下动态再结晶是间断进行的。间断进行的。工艺参数工艺参数( (形变温度形变温度T T和形变速度和形变速度) )对对 c c、 r r,都有影响,只是,都有影响,只是T T、 对对

38、r r的的影响比对影响比对 c c的影响大。的影响大。当当T T高或者高或者 低时,低时, c cr r,出现非稳态形变,不连续动态再结晶;而当,出现非稳态形变,不连续动态再结晶;而当T T低或者低或者 高时,高时, c cr r,出现稳态形变,连续动态再结晶。,出现稳态形变,连续动态再结晶。 应力应力应变曲线的最大应力值应变曲线的最大应力值 p p( (或恒应变应力值或恒应变应力值) )、形变、形变速度速度 、形变温度、形变温度T T之间符合以下关系:之间符合以下关系:=A=An nxp(-Qxp(-QRT) RT) 式中式中AA常数;常数;nn应力指数;应力指数; QQ形变活化能;形变活化

39、能;RR气体常数;气体常数;TT绝对温度。绝对温度。动态再结晶发生时,动态再结晶发生时,n n为为4 46 6,大多数为,大多数为6 6。QQ大体等于自扩大体等于自扩散激活能。当散激活能。当QQ不依赖于应力、温度时,不依赖于应力、温度时, p p ( (或或 s s) )可用可用Zener-Zener-HollomonHollomon因子因子Z Z来表示:来表示:Z=exp(QZ=exp(QRT)=ART)=An n 式中式中Z Z为为温度补偿形变速率因子温度补偿形变速率因子,可表示,可表示 和和T T的各种组合,是一个的各种组合,是一个使用方便的因子。当形变温度愈低、形变速率使用方便的因子。

40、当形变温度愈低、形变速率 愈大时,愈大时,Z Z值变大,值变大,即即 p p 、 s s大,动态再结晶开始的形变量大,动态再结晶开始的形变量 c c和动态再结晶完成的形和动态再结晶完成的形变量变量 s s也变大,也就是说需要一个较大的形变量才能发生再结晶。也变大,也就是说需要一个较大的形变量才能发生再结晶。再结晶发生的条件再结晶发生的条件当当Z Z一定时,随着加工程度一定时,随着加工程度 的增大,材料组织发生由动态的增大,材料组织发生由动态回复回复部分动态再结晶部分动态再结晶完全动态再结晶的变化。完全动态再结晶的变化。当加工程度当加工程度 一定时,一定时,随着随着Z Z的变大,材料组织发生由完

41、全的变大,材料组织发生由完全动态再结晶动态再结晶部分动态再结晶部分动态再结晶动态回复的变化动态回复的变化。也就是说。也就是说 一定时,在某一一定时,在某一Z Z值以上得不到动态再结晶组织,这个值以上得不到动态再结晶组织,这个Z Z值就为值就为Z Z的上临界值的上临界值Z Zc c。应该指出,。应该指出,Z Zc c值是随加工程度值是随加工程度 而变的,而变的, 愈愈大大Z Zc c愈大,即在较大的愈大,即在较大的Z Z值下也能产生动态再结晶。因此动态值下也能产生动态再结晶。因此动态再结晶能否发生,由再结晶能否发生,由Z Z和和 来决定。来决定。试验用钢的热形变奥氏体动态再结晶图试验用钢的热形变

42、奥氏体动态再结晶图Z Z参数愈小参数愈小( (即形变温度愈高即形变温度愈高) ),则愈易发生动态再结晶,则愈易发生动态再结晶,再结晶临界形变量就愈小。再结晶临界形变量就愈小。钛钛和和铌铌具有强烈阻碍动态再结晶的作用。具有强烈阻碍动态再结晶的作用。 完全再结晶奥氏体部分再结晶奥氏体加工硬化奥氏体形变温度对形变温度对10B2110B21钢真应力真应变曲线的影响钢真应力真应变曲线的影响应变速率应变速率0.01s0.01s-1-1时的真应力时的真应力真应变曲线真应变曲线10B2110B21钢钢0.01s0.01s-1-1变变形后的显微组织形后的显微组织8008008258258508508758759

43、009009509501000100010501050应变速率对应变速率对10B2110B21钢真应力钢真应力- -真应变曲线的影响真应变曲线的影响800800850850875875950950100010001050105010B2110B21钢和钢和2020钢热变形钢热变形 行为对比和硼的作用行为对比和硼的作用10B2110B21钢钢 0.01s0.01s-1-12020钢钢 0.01s0.01s-1-1 加硼后其应力应变曲线的峰顶和峰谷应变值增大,如加硼后其应力应变曲线的峰顶和峰谷应变值增大,如875875时,时,2020钢峰值应变钢峰值应变0.210.21,10B2110B21钢为钢

44、为0.280.28。相同应变量时,含硼钢比未含。相同应变量时,含硼钢比未含硼钢的流变应力大,即硼钢形变抗力大。硼钢的流变应力大,即硼钢形变抗力大。 变形温度提高,应变值降低。与硼的析出和偏聚量有关。变形温度提高,应变值降低。与硼的析出和偏聚量有关。 硼使再结晶温度提高。硼使再结晶温度提高。合金元素对再结晶行为的影响合金元素对再结晶行为的影响 微合金碳氮化物的析出将强烈阻止再结晶的发生。微合金碳氮化物的析出将强烈阻止再结晶的发生。 (1)(1)析出物的钉扎机制析出物的钉扎机制,因为对于析出物而言,最优先的,因为对于析出物而言,最优先的形核位置是晶界和形变引入的位错,析出的粒子抑制亚晶界形核位置是

45、晶界和形变引入的位错,析出的粒子抑制亚晶界迁移,抑制再结晶,析出减少了再结晶的形核位置,延迟了迁移,抑制再结晶,析出减少了再结晶的形核位置,延迟了再结晶的发生;再结晶的发生;(2)(2)溶质原子的拖曳效应溶质原子的拖曳效应,即溶质原子对晶界迁移速度的,即溶质原子对晶界迁移速度的影响。影响。 这两种机制都能较好地解释析出对再结晶的影响,钉扎这两种机制都能较好地解释析出对再结晶的影响,钉扎的效果占主导地位,加热时未溶的析出物对再结晶发生没有的效果占主导地位,加热时未溶的析出物对再结晶发生没有影响,只是对再加热奥氏体长大有影响。影响,只是对再加热奥氏体长大有影响。 弥散或沉淀粒子平均半径弥散或沉淀粒

46、子平均半径( () )和晶粒平均半径和晶粒平均半径( () )之间有之间有下列关系下列关系(Zener(Zener关系关系) ): 式中式中 弥散粒子的体积分数。弥散粒子的体积分数。可推导出方程:可推导出方程: 这些方程表明,因为粒子尺寸很小,所以钉扎作用对晶这些方程表明,因为粒子尺寸很小,所以钉扎作用对晶界迁移有很大影响。界迁移有很大影响。如果平均粒子尺寸相同,体积分数越大,也就是如果平均粒子尺寸相同,体积分数越大,也就是粒子数粒子数目越多,则钉扎所起的作用也越大目越多,则钉扎所起的作用也越大。此外此外k k0 0越小,钉扎作用也越有效。越小,钉扎作用也越有效。MMa aCCb b的溶解度的

47、溶解度X Xmm较小较小时,时,k k0 0较小。因为较小。因为碳氮化铌或碳氮化钛的溶解度非常小,所以碳氮化铌或碳氮化钛的溶解度非常小,所以它们的钉扎效果很大它们的钉扎效果很大。 rR9/4rR tkRR03130394铁素体的形变与再结晶铁素体的形变与再结晶铁素体为体心立方铁素体为体心立方(bcc)(bcc)结构,层错能较高,容易进行结构,层错能较高,容易进行位错的攀移和交滑移过程。一般认为铁素体在热加工过程位错的攀移和交滑移过程。一般认为铁素体在热加工过程中易于发生动态回复,而且动态回复可以完全和应变硬化中易于发生动态回复,而且动态回复可以完全和应变硬化平衡,从而在热加工过程中不易发生动态

48、再结晶。平衡,从而在热加工过程中不易发生动态再结晶。自自2020世纪世纪7070年代以来,已有关于铁素体动态再结晶的年代以来,已有关于铁素体动态再结晶的大量研究报道。大量研究报道。 铁素体动态再结晶机理铁素体动态再结晶机理(1)(1)晶界凸起机制晶界凸起机制( (连续动态再结晶机制连续动态再结晶机制) ),铁素体,铁素体动态再结晶是通动态再结晶是通过动态回复形成亚晶过动态回复形成亚晶,随着应变的增加,亚晶界连续吸收位错而发生亚,随着应变的增加,亚晶界连续吸收位错而发生亚晶转动、粗化和亚晶界粗化,亚晶间取向差加大,形成大角度晶界,最晶转动、粗化和亚晶界粗化,亚晶间取向差加大,形成大角度晶界,最终

49、形成新的晶粒。终形成新的晶粒。在小形变时起主导作用;一般发生在形变的开始阶段,例如在应变在小形变时起主导作用;一般发生在形变的开始阶段,例如在应变为为0.050.05以上时起作用。以上时起作用。(2)(2)形核长大机制形核长大机制( (不连续动态再结晶机制不连续动态再结晶机制) ),在高应变时起主导作,在高应变时起主导作用。铁素体用。铁素体动态再结晶是通过原始晶界的迁移动态再结晶是通过原始晶界的迁移,实现形核及长大,来消,实现形核及长大,来消除位错积累、释放形变储存能;这种机制能有效释放形变储存能,使应除位错积累、释放形变储存能;这种机制能有效释放形变储存能,使应力力- -应变曲线出现应力峰及

50、随后的应力下降现象。应变曲线出现应力峰及随后的应力下降现象。形核长大机制在应变超过形核长大机制在应变超过0.20.2时才起主导作用。时才起主导作用。然而即使在应变高于然而即使在应变高于0.20.2的稳态形变过程中,因为不断发生再结晶,的稳态形变过程中,因为不断发生再结晶,每个晶粒的实际应变值可能是相当小的,所以,即使在稳态形变过程中每个晶粒的实际应变值可能是相当小的,所以,即使在稳态形变过程中也会出现晶界凸起机制占主导作用的情况。也会出现晶界凸起机制占主导作用的情况。()()晶粒弓出形核(不连续动态再结晶)晶粒弓出形核(不连续动态再结晶)形变开始后,原始晶界发形变开始后,原始晶界发生弯曲,并且

51、伴随着亚晶界的生弯曲,并且伴随着亚晶界的发展;发展;形变继续进行,部分原始形变继续进行,部分原始晶界发生切变,导致局部应变晶界发生切变,导致局部应变的不均匀分布;的不均匀分布;形变到一定程度后,由晶形变到一定程度后,由晶界切变和界切变和( (或或) )晶粒转动引起弯曲晶粒转动引起弯曲晶界的弓出和应变诱导亚晶界晶界的弓出和应变诱导亚晶界的发展,导致新的动态再结晶的发展,导致新的动态再结晶晶粒的形成。晶粒的形成。在晶界处动态再结晶形核机制的在晶界处动态再结晶形核机制的示意图示意图在不同在不同Z Z值条件下形变时亚结构形成、湮灭过程值条件下形变时亚结构形成、湮灭过程及动态再结晶开始的示意图及动态再结

52、晶开始的示意图 铁素体的连续动态再结晶铁素体的连续动态再结晶随着形变的进行,原始晶粒中产生大量位错,位错通随着形变的进行,原始晶粒中产生大量位错,位错通过攀移和交滑移形成位错墙,并最终形成亚晶界,即过攀移和交滑移形成位错墙,并最终形成亚晶界,即通过通过动态回复过程形成亚晶动态回复过程形成亚晶。在在高高Z Z值条件下值条件下,亚晶界不易迁移,亚晶界处发生的,亚晶界不易迁移,亚晶界处发生的位错间交互作用导致亚结构的形成和发展;位错间交互作用导致亚结构的形成和发展; Z Z值较高时,值较高时,虽然亚晶界的迁移性小,但应变不断增加,强迫虽然亚晶界的迁移性小,但应变不断增加,强迫亚晶界持亚晶界持续吸收位

53、错,使其角度不断增大续吸收位错,使其角度不断增大,最终完成由小角度晶界,最终完成由小角度晶界向大角度晶界的转变,形成新的晶粒。向大角度晶界的转变,形成新的晶粒。 随着随着Z Z值的降低值的降低,亚晶界的迁移变得容易,亚晶界的迁移变得容易,亚晶界迁亚晶界迁移引起亚晶界的粗化移引起亚晶界的粗化,导致真正晶界,导致真正晶界( (大角度晶界大角度晶界) )的形成,的形成,也就是形成了新晶粒。也就是形成了新晶粒。铁素体的静态再结晶铁素体的静态再结晶产生静态再结晶也是有条件的,也就是只有在铁素体中产生静态再结晶也是有条件的,也就是只有在铁素体中的形变达到某一值的形变达到某一值 s s后才能发生。后才能发生

54、。当形变量当形变量s s时只能发生静态的回复过程。时只能发生静态的回复过程。当当st st以后,随着形变量的增加,静态再结晶速度保持以后,随着形变量的增加,静态再结晶速度保持一定,不再变化。一定,不再变化。铁素体静态铁素体静态再结晶动力学再结晶动力学同样可用公式同样可用公式x=1-exp(-ktx=1-exp(-ktn n) )来来描述,即在同样的形变量下,描述,即在同样的形变量下,随着温度升高或停留时间延长,随着温度升高或停留时间延长,再结晶的质量分数都增加,再结晶的质量分数都增加,并且形变量对静态再结晶也有影并且形变量对静态再结晶也有影响。响。微合金化钢的控轧控冷技术微合金化钢的控轧控冷技

55、术通过适当调整钢的化学成分,特别是进行微合金化,控制形变制度(包括加热温度、轧制锻造温度、形变量、形变速率和轧锻后冷却速度等),达到控制相变、细化组织、提高钢材强度与韧性的目的。通过对上述参量加以控制,旨在阻止奥氏体晶粒长大和延缓或抑制形变奥氏体再结晶,可确保制件强韧性的稳定提高,使其达到产品技术性能指标要求。 控轧控冷的优点: (1)通过细化晶粒,使钢材的强度和低温韧性有较大幅度的改善。以普通钢种为例,按常规轧制工艺,晶粒度最细为78级,晶粒直径为20m,而采用控轧控冷工艺,其晶粒度可达12级以上,直径小于5m,从而大大改善了钢的强韧性。(2) 防止原始奥氏体晶粒长大而降低了钢坯的加热温度,

56、并通过控制冷却取消了轧后的调质处理,这样既可节省能源又简化了生产工艺。(3)可以充分发挥微量合金元素V、Nb和Ti的作用。如49MnVS3钢,在常规轧制中,其中的钒主要是提高钢材的强度,而在控轧控冷工艺中,它不仅起到沉淀强化的作用,而且可细化晶粒,使轧后钢材的韧性也同时得到了改善。微量铌和钒或铌和钛的同时加入,通过控轧控冷,可同时发挥细化晶粒和沉淀硬化的作用,使钢材的综合力学性能得到显著提高。控制轧制分类:奥氏体再结晶控制轧制(又称为I型控轧)、奥氏体未再结晶区控制轧制(又称为型控轧)(+)两相区控制轧制(又称型控轧)。实际的控制轧制中,一般采用上述几种方式的组合,即在奥氏体形变高温阶段,通过

57、奥氏体再结晶区控制轧制得到等轴细小的奥氏体再结晶晶粒;在奥氏体未再结晶区形变得到“拉长”的未再结晶的晶粒,晶内出现高密度的形变孪晶和形变带,从而增加形核面积;在(+)两相区形变时,一方面奥氏体晶粒被拉长,另一方面已相变的铁素体晶粒内部出现亚结构。控轧控冷与传统工艺相比较示意图TMR热机械轧制;LL处理(中间淬火);R热轧;AC加速冷却;CR控制轧制;N正火; DQ直接淬火;RQ传统加热淬火;T回火控制轧制的三个阶段及各阶段奥氏体组织 A 奥氏体再结晶区轧制(再结晶终止温度(TR)之上(大于约950))。在奥氏体再结晶区轧制时,轧件在轧机形变区内发生动态回复和不完全再结晶。在两道次之间的间隙时间

58、内,完成静态回复和静态再结晶。加热后获得的奥氏体晶粒随着反复轧制再结晶而逐渐变细。在这一阶段内,因为再结晶而获得细小的晶粒,奥氏体晶界面积增大,为奥氏体向铁素体相形变核提供更多位置,导致晶粒的细化,相变后的铁素体晶粒度可达到89级。再结晶区轧制通过再结晶进行奥氏体晶粒的细化,进而细化晶粒。此阶段中奥氏体的进一步细化较为困难,它是控制轧制的准备阶段。 再结晶轧制的不完全再结晶与混晶为了达到完全再结晶,应保证轧制温度在再结晶温度以上,而且要有足够的形变量。一般而言,再结晶的晶粒尺寸随着轧制压下率的增加而迅速减小,并且达到一个极限值,这个极限限定了再结晶细化晶粒的限度。 如果形变量不能达到完全再结晶

59、的临界形变量,将发生奥氏体部分再结晶。在此区间进行多道次轧制,即使总形变量很大,但如果轧制温度下降,可能仍不能获得完全再结晶组织,晶粒尺寸差别加大。这种组织经相变后,铁素体晶粒尺寸仍是不均匀的,混晶现象严重,有时还会出现少量的特大晶粒。B奥氏体未再结晶区轧制(TR之下(约950Ar3))奥氏体晶粒经过了形变,但不发生再结晶,通过累积形变量,形成大量被拉长的形变奥氏体。形变量大时,晶粒内产生大量的滑移带和位错,增大了有效晶界面积,相变时铁素体在晶界上和形变带上形核。奥氏体未再结晶区形变造成了以位错、形变带和胞状组织等形式的应变积累奥氏体,应变积累不仅可以增加铁素体形核位置和形核率,而且可以产生形

60、变诱导铁素体和铁素体的动态再结晶,使晶粒细化。加大冷却速度,也可以增加铁素体形核位置和形核率,使晶粒细化。由于形核位置增多和分散,所以铁素体晶粒细小,珠光体尺寸也细小和分散,铁素体晶粒度可达到1112级。如果在未再结晶区形变量不足,就会得到粗细不均的铁素体晶粒。在未再结晶区的形变量应控制在40%50%或更大。随着道次形变量和在此温度区间的总形变量的增大,钢的屈服强度也提高,脆性转变温度下降,并且韧性特别是低温韧性得到明显改善。未再结晶控制轧制引起钢的强度和韧性的改善,主要是由于铁素体晶粒的细化,铁素体数量增多,珠光体数量减少以及其球团直径减小所致。含有微量元素的钢,由于再结晶温度升高,奥氏体未

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论