下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课时38与圆有关的位置关系【课前热身】1.O的半径为,圆心O到直线的距离为,则直线与O的位置关系是()A 相交 B 相切 C 相离 D 无法确定2.如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映 出的两圆位置关系有( ) A内切、相交 B外离、相交 C外切、外离 D外离、内切3.两圆半径分别为3和4,圆心距为7,则这两个圆( )A外切 B相交 C相离 D内切PBAO4.如图,从圆外一点引圆的两条切线,切点分别为如果,那么弦的长是( )A4B8CD5.已知O的半径是3,圆心O到直线AB的距离是3,则直线AB与O的位置关系是 .【考点链接】1. 点与圆的位置关系共有三种: , ,
2、;对应的点到圆心的距离d和半径r之间的数量关系分别为:d r,d r,d r.2. 直线与圆的位置关系共有三种: , , .对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:d r,d r,d r.3. 圆与圆的位置关系共有五种: , , , , ;两圆的圆心距d和两圆的半径R、r(Rr)之间的数量关系分别为:d Rr,d Rr, Rr d Rr,d Rr,d Rr.4. 圆的切线 过切点的半径;经过 的一端,并且 这条 的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形
3、 的交点.7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 .【典例精析】例1 如图,线段经过圆心,交O于点,点在O上,连接,是O的切线吗?请说明理由例2如图所示,O的直径AB=4,点P是AB延长线上的一点,过P点作O 的切线,切点为C,连结AC.(1)若CPA=30°,求PC的长;(2)若点P在AB的延长线上运动,CPA的平分线交AC于点M. 你认为CMP的大小是否发生变化?若变化,请说明理由;若不变化,求CMP的大小.MPOCBAOAECDB例3 如图,是O的直径,是O的弦,延长到点,使,连结,过点作,垂足为(1)求证:;(2)求证:为O的切
4、线;(3)若O的半径为5,求的长【中考演练】1.如图,P为O外一点,PA切O于点A,且OP=5,PA=4,则sinAPOPOA·等于()A B C DO2O3O12. 如图,O1,O2,O3两两相外切,O1的半径,O2的半径,O3的半径,则是( )A锐角三角形B直角三角形C钝角三角形D锐角三角形或钝角三角形3.如图,O是ABC的外接圆,O的半径R2,sinB,则弦AC的长为 4.已知,的半径为,的半径为,且与相切,则这两圆的圆心距为_BDCEAO5. 如图所示,是直角三角形,以为直径的O 交于点,点是边的中点,连结(1)求证:与O相切;(2)若O的半径为,求6. 如图,点A,B在直线MN上,AB11厘米,A,B的半径均为1厘米A以每秒2厘米的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024项目融资合同协议书
- 2025年度中医食疗研究与推广合同4篇
- 2025年度特色餐饮连锁品牌授权合同3篇
- 2025年度生态修复工程承包商借款合同范本4篇
- 2025年度数据中心运维外包合同4篇
- 2025年度体育用品代理服务合同模板4篇
- 2025年度物流车辆环保排放检测合同4篇
- 2025年度人工智能技术应用与开发合同2篇
- 2024版全新销售担保合同范本下载
- 2025年度新能源汽车充电站车位销售与管理协议4篇
- 专升本英语阅读理解50篇
- 施工单位值班人员安全交底和要求
- 中国保险用户需求趋势洞察报告
- 数字化转型指南 星展银行如何成为“全球最佳银行”
- 中餐烹饪技法大全
- 灵芝孢子油减毒作用课件
- 现场工艺纪律检查表
- 医院品管圈与护理质量持续改进PDCA案例降低ICU病人失禁性皮炎发生率
- 新型电力系统研究
- 烘干厂股东合作协议书
- 法院服务外包投标方案(技术标)
评论
0/150
提交评论