动态平衡问题常见解法_第1页
动态平衡问题常见解法_第2页
动态平衡问题常见解法_第3页
动态平衡问题常见解法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、动态平衡问题苗贺铭动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。因此,本文对动态平衡问题的常见解法梳理如下。所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。即三个力能围成一个闭合的矢量三角形。一、图解法方法:对研究对象受力分析,将三个力的示意图首尾相连构成闭合三角形。然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角

2、形的边长,各力的大小及变化就一目了然了。例题1 如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为FN1,球对木板的压力大小为FN2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( ) A. FN1始终减小 B. FN2始终减小 C. FN1先增大后减小 D. FN2先减小后增大解析:以小球为研究对象,分析受力情况:重力G、墙面的支持力和木板的支持力,如图所示:由矢量三角形可知:始终减小, 始终减小。归纳:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小

3、变化,第三个力则大小、方向均发生变化的问题。二、解析法方法:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。例题2.1 倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示在这一过程中,物块m受到长木板支持力FN和摩擦力Ff的大小变化情况是()A. FN变大,Ff变大B. FN变小,Ff变小C. FN变大,Ff变小D. FN变小,Ff变大解析: 设木板倾角为根据平衡条件:FN=mgcos Ff=mgsin可见减小,则FN变大,Ff变小;故选:C例题

4、2.2 如图所示,轻绳OA、OB系于水平杆上的A点和B点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O点。将杆在竖直平面内沿顺时针方向缓慢转动30°此过程中( )A. OA绳上拉力变大,OB绳上拉力变大B. OA绳上拉力变大,OB绳上拉力变小C. OA绳上拉力变小,OB绳上拉力变大D. OA绳上拉力变小,OB绳上拉力变小解析:转动前,TA=TB,2TAsin30°=mg,则TA=mg=TB; 转动后,OA与水平方向的夹角变为60°,OB变为水平。 TAsin60°=mg ,TAcos60°= TB 解得:TA=mg ,TB=T

5、A=mg ,故B正确。 归纳:解析法适用于一个力大小、方向都不变,另两个力在变化的过程中始终垂直的问题,或一个力大小、方向不变,另两个力大小相等的问题3、 相似三角形方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。例题3 如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是( )。(A) N变大,T变小(B)N变小,T变大(B) N变小,T先变小

6、后变大(D)N不变,T变小解析:小球受力如图所示,此三力使小球受力平衡.力矢量三角形如图乙,设球面半径为R,BC=h,AC=L,AO=R.则由三角形相似有:=G、h、R均为定值,故FN为定值,不变,FTL,由题知:L,故FT.故D正确.归纳:相似三角形法适用于物体受到的三个力中,一个力的大小、方向均不变,其他两个力的方向均发生变化,且三个力中没有两个力保持垂直关系,但可以找到与力构成的矢量三角形相似的几何三角形的问题。4、 辅助圆法方法:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形

7、,从而轻易判断各力的变化情况。第二种情况以大小不变,方向变化的力为半径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的力的矢量三角形,从而轻易判断各力的变化情况。例题4.1 如图所示,物体G用两根绳子悬挂,开始时绳OA水平,现将两绳同时沿顺时针方向转过90°,且保持两绳之间的夹角不变(>90°),物体保持静止状态。在旋转过程中,设绳OA的拉力为T1,绳OB的拉力为T2,则:(  )A、T1先减小后增大      B、T1先增大后减小C、T2逐渐减小      

8、60;   D、T2最终变为零解析:取绳子结点O为研究对角,受到三根绳的拉力,如图所示分别为F1、F2、F3,将三力构成矢量三角形(如图所示的实线三角形CDE),需满足力F3大小、方向不变,角CDE不变(因为角不变),由于角DCE为直角,则三力的几何关系可以从以DE边为直径的圆中找,则动态矢量三角形如图中画出的一系列虚线表示的三角形。由此可知,F1先增大后减小,F2随始终减小,且转过90°时,当好为零。正确答案选项为B、C、D。例题4.2如图所示,在做“验证力的平行四边形定则”的实验时,用M、N两个测力计(图中未画出)通过细线拉橡皮条的端点,使其到达O点,此时+=

9、90°,然后保持M的示数不变,而使角减小,为保持端点位置不变,可采用的办法是() A 减小N的示数同时减小角 B 减小N的示数同时增大角 C 增大N的示数同时增大角 D 增大N的示数同时减小角解析:以结点O为研究对角,受到三个拉力,如图所示分别为FM、FN、F合,将三力构成矢量三角形(如图所示的实线三角形),以O为圆心,FM为半径作圆,需满足力F合大小、方向不变,角减小,则动态矢量三角形如图中画出的一系列虚线表示的三角形。由此可知FN的示数减小同时角减小。故选A。归纳:作辅助圆法适用的问题类型可分为两种情况:物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、

10、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变。5、 拉密定理法方法:如图所示,在同一平面内,当三个共点力的合力为零时,其中任一个力与其它两个力夹角正弦的比值相等,即=。其实质就是正弦定理的变型。例题5 如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N初始时,OM竖直且MN被拉直,OM与MN之间的夹角(90°)现将重物向右上方缓慢拉起,并保持夹角不变,在OM由竖直被拉到水平的过程中( )A MN上的张力逐渐增大 B MN上的张力先增大后减小C OM上的张力逐渐增大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论