导数的几何意义教案修改_第1页
导数的几何意义教案修改_第2页
导数的几何意义教案修改_第3页
导数的几何意义教案修改_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、科目数学课题§1.1.3导数的几何意义教师苏慧兰时间2011-4-14教学目标知识与技能1.曲线的切线定义2使学生掌握函数在处的导数的几何意义就是函数的图像在处的切线的斜率,即:3利用导数的几何意义解释实际生活问题,体会“数形结合”,“以直代曲”的数学思想方法。以简单对象刻画复杂的对象过程与方法通过让学生在前后知识的迁移中观察、探索、讨论、解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的情感、态度与价值观导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。教材分析重点导数的几何意义及“数形结合,以直代曲”的

2、思想方法难点发现、理解及应用导数的几何意义学法引导在学习时多从生活中的实例,借助于图形直观帮助对概念的理解。课时安排1课时教法启发式教学手段多媒体辅助教学教与学过程设计教与学过程设计一复习回顾由导数的定义可知,求函数y=f(x)在x=x0处的导数的基本步骤是:y B A x平均变化率;瞬时变化率.设计意图引导学生回忆本节课的旧知识,为下面探究导数的几何意义做准备。二问题设置如图:判断直线是否为圆的切线?直线 呢?曲线的切线及切线的斜率:如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?()Pn图3.1-2曲线C是函数y=f(x)的图象,P(x0,f(x0)是曲线C上的任意一点, Pn

3、(x0+x, f(x0+x) )为P邻近一点,PPn为C的割线.切线的定义:当点Pn趋近于点P时,割线PPn趋近于确定的位置PT,这个确定位置的直线PT称为曲线在点P处的切线.那么曲线在点P处的切线PT的斜率为当x0时,割线PPn的斜率函数在处的导数的几何意义就是函数的图像在处的切线的斜率。(数形结合),即:切线斜率的本质函数在x=x0处的导数.如图:直线是曲线C的切线吗? 直线呢? yO x平均变化率 瞬时变化率(导数)割线的斜率 切线的斜率了解以直代曲思想根据导数的几何意义,在点P附近,曲线可以用在点P处的切线近似代替,这是微积分中重要的思想方法-以直代曲。三知识应用例1(课本例2)如图3

4、.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况解:我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降(2) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减(3) 当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢思考:比较曲线分别在附近增(减)以及增(减)快慢的情况。当时,曲线在处切线的斜率所以,在附近曲线上升,即函数在附近单调递增.与相比,曲

5、线在附近上升得缓慢些.四课堂练习(见课本P105)五巩固理解例2.根据下列条件,分别画出函数图象在这点附近的大致形状。(1);(2) ;(3) .练习:根据下面的文字叙述,画出相应的路程关于时间的函数图像的大致形状。(1)汽车在笔直的公路上匀速行驶;(2)汽车在笔直的公路上不断加速行驶;(3)汽车在笔直的公路上不断减速行驶。六归纳小结1.曲线的切线定义2使学生掌握函数在处的导数的几何意义就是函数的图像在处的切线的斜率。(数形结合),即:切线的斜率3 利用导数的几何意义解释实际生活问题,体会“数形结合”,“以直代曲”的数学思想方法。以简单对象刻画复杂的对象七作业布置 1习题P11 B3. 2请给

6、出求函数在处的切线方程的一个算法.初中平面几何中圆的切线定义:如果直线与圆有唯一公共点,则称直线与圆相切,这条直线叫圆的切线。用运动的观点解释圆的切线:让圆的割线运动到确定的位置(即直线与圆只有唯一一个交点处)就形成了圆的切线。用运动的观点研究一般曲线的切线。观察曲线某点处的割线和切线,让学生感知当,割线的变化趋势。用逼近的方法,将割线趋近确定的位置定义成切线适用于任何曲线,更加直观的反映了切线的本质。通过将曲线一点处的局部“放大、放大、再放大”的直观方法,引导学生理解以直代曲思想是指某点附近一个很小的研究区域内,曲线与切线的变化趋势基本一致,故可由曲线上某点处的切线近似代替这一点附近的曲线,形象而逼真地再现“以直代曲”思想。以简单对象刻画复杂的对象时,我们

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论