计量经济学(国债发行额数学模型)_第1页
计量经济学(国债发行额数学模型)_第2页
计量经济学(国债发行额数学模型)_第3页
计量经济学(国债发行额数学模型)_第4页
计量经济学(国债发行额数学模型)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上国债,又称国家,是国家以其信用为基础,按照债的一般原则,通过向社会筹集资金所形成的债权债务关系。国债是由国家发行的债券,是中央政府为筹集财政资金而发行的一种政府债券,是中央政府向投资者出具的、承诺在一定时期支付利息和到期偿还本金的债权债务凭证,由于国债的发行主体是国家,所以它具有最高的信用度,被公认为是最安全的投资工具。售出或被个人和企业认购的过程,它是国债运行的起点和基础,核心是确定国债售出的方式即国债发行方式。 一般而言,国债发行主要有四种方式:1.固定收益出售法; 2.公募拍卖方式。 3.连续经销方式 4.承受发行法国债的发行额,是中国财政部必须要做出的,影响国

2、债发行额的因素多种多样,为此,我们建立模型,研究国债发行额Y与国内生产总值X1、财政赤字X2、国债还本付息额X3、居民储蓄额X4的关系,来得到各因素国债发行的影响大小,及确定来年的国债额数。我们采集从1980年到2001年的数据进行研究,数据如下:时间YX1X2X3X4198043.0145.17868.928.583991981121.7448.624-37.3862.89524198283.8652.94717.6555.52675198379.4159.34542.5742.47893198477.3471.7158.1628.91215198589.8589.644-0.5739.56

3、16231986138.25102.02282.950.1722371987223.55119.62562.8379.8330811988270.78149.283133.9776.7638221989407.97169.092158.8872.3751961990375.45185.479146.49190.0771201991461.4216.178237.14246.892421992669.68266.381258.83438.57117591993739.22346.344293.35336.221520419941175.25467.594574.52499.36215191995

4、1549.76584.781581.52882.962966219961967.28678.846529.561355.033852119972476.82744.626582.421918.374628019983310.93783.452922.232352.925340819993715.03820.67461743.591910.535962220004180.1894.4222491.271579.826433220014604959.3332516.542007.7373762由数据,我们进行第一次拟合:Dependent Variable: YMethod: Least Squa

5、resDate: 10/25/11 Time: 16:54Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C14.4348135.409080.0.6886X10.0.0.0.6784X20.0.6.0.0000X30.0.4.0.0001X40.0.0.0.7182R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regressio

6、n53.18111 Akaike info criterion10.98200Sum squared resid48079.92 Schwarz criterion11.22996Log likelihood-115.8020 F-statistic4094.752Durbin-Watson stat2. Prob(F-statistic)0.得到线性拟合方程为:Y=14.43481+0.X1+0.X2+0.X3+0.X4 O. 0. 6. 4. 0.R2=O. R-2=0. F=4094.752从总体上看,模型中国债发行额与各解释变量线性关系显著。检验: 计算解释变量之间的简单相关系数X1X

7、2X3X4X1 1. 0. 0. 0.X2 0. 1. 0. 0.X3 0. 0. 1. 0.X4 0. 0. 0. 1.从表中,可以发现,解释变量存在着高度线性相关,虽然在整体上线性回归拟合较好,但X1,X4的参数t值并不显著,表明模型中解释变量存在严重多重线性共线性。修正:1、 Y与X1线性回归:Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time: 17:16Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-Statisti

8、cProb. C-388.3980124.1492-3.0.0053X14.0.17.180410.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression383.5804 Akaike info criterion14.82348Sum squared resid. Schwarz criterion14.92267Log likelihood-161.0583 F-statistic295.1665Durbin-Watson stat

9、0. Prob(F-statistic)0.Y=-388.3980+4.X1 -3. 17.18041R2=0. R-2=0. F=295.16652、 Y与X2拟合:Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time: 17:21Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C249.5863129.59951.0.0685X21.0.12.952960.0000R-squared0. Mea

10、n dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression496.9387 Akaike info criterion15.34132Sum squared resid. Schwarz criterion15.44050Log likelihood-166.7545 F-statistic167.7791Durbin-Watson stat0. Prob(F-statistic)0.Y=249.5863+1.X2 1. 12.95296R2=0. R-2=0. F=167.7

11、7913、Y与X3拟合:Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time: 17:27Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C80.25663138.50020.0.5687X31.0.12.857500.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.

12、E. of regression500.2312 Akaike info criterion15.35453Sum squared resid. Schwarz criterion15.45371Log likelihood-166.8998 F-statistic165.3154Durbin-Watson stat0. Prob(F-statistic)0. Y=80.25663+X3 0. 12.85750R2=0. R-2=0. F=165.3154 因常数项t=0.<2.306 则省略常数项,得到拟合方程为: Y=X34、 Y与X4拟合:Dependent Variable: Y

13、Method: Least SquaresDate: 10/25/11 Time: 17:30Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C-32.4313144.08887-0.0.4705X40.0.43.303940.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression156.4211 Akaike

14、 info criterion13.02949Sum squared resid.3 Schwarz criterion13.12867Log likelihood-141.3244 F-statistic1875.231Durbin-Watson stat0. Prob(F-statistic)0.Y=-32.43131+0.X4-0. 43.30394 R2= R-2=0. F=1875.231因常数项t=-0.<2.306 则省略常数项,得到拟合方程为:Y=0.X4 在四个拟合方程中,X4的t检验值最大,则选出X45、 Y与X4、X1拟合:Dependent Variable: Y

15、Method: Least SquaresDate: 10/25/11 Time: 17:40Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C176.706545.534463.0.0010X1-2.0.-5.0.0000X40.0.17.136510.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression9

16、7.01420 Akaike info criterion12.11372Sum squared resid.4 Schwarz criterion12.26249Log likelihood-130.2509 F-statistic2453.999Durbin-Watson stat1. Prob(F-statistic)0.Y=176.7065-2.X1+0.X4 3. -5. 17.13651R2=0. R-2=0. F=2453.9996、 Y与X2、X4拟合: Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time:

17、 17:44Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C-6.30.06927-0.0.8339X20.0.5.0.0001X40.0.20.693360.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression105.0896 Akaike info criterion12.27363Sum square

18、d resid.5 Schwarz criterion12.42241Log likelihood-132.0099 F-statistic2089.942Durbin-Watson stat1. Prob(F-statistic)0. Y=-6.+0.X2+0.X4 -0. 5. 20.69336 R2=0. R-2=0. F=2089.942 因常数项的t=-0.<2.306,则省略常数项,得到拟合方程为: Y=0.X2+0.X47、 Y与X3、X4的拟合: Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time:

19、17:49Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. C-32.7135742.26045-0.0.4484X3-0.0.-1.0.1125X40.0.14.269790.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression149.9329 Akaike info criterion12.98438Sum

20、 squared resid.9 Schwarz criterion13.13316Log likelihood-139.8281 F-statistic1021.904Durbin-Watson stat0. Prob(F-statistic)0. Y=-32.71357-0.X3+0.X4 -0. -1. 14.26979 R2=0. R-2=0. F=1021.904因常数项和X3系数绝对值的t值都小于2.306,先省略常数项,由X3与X4与Y进行拟合:Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time: 17:57

21、Sample: 1980 2001Included observations: 22VariableCoefficientStd. Errort-StatisticProb. X3-0.0.-1.0.1090X40.0.14.525610.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression148.4231 Akaike info criterion12.92452Sum squared resid.3 Schwarz criteri

22、on13.02370Log likelihood-140.1697 F-statistic2084.990Durbin-Watson stat0. Prob(F-statistic)0.此时,发现X3系数的t值依然小于2.306,则省略X3,得到拟合方程为: Y=0.X4比较后三个拟合方程,选出最优为Y与X1、X4的拟合。8、 Y与X1、X2、X4拟合:Dependent Variable: YMethod: Least SquaresDate: 10/25/11 Time: 18:03Sample: 1980 2001Included observations: 22VariableCoef

23、ficientStd. Errort-StatisticProb. C124.504341.072913.0.0072X1-1.0.-3.0.0012X20.0.3.0.0056X40.0.11.055320.0000R-squared0. Mean dependent var1216.395Adjusted R-squared0. S.D. dependent var1485.993S.E. of regression80.05422 Akaike info criterion11.76625Sum squared resid.2 Schwarz criterion11.96462Log likelihood-125.4288 F-statistic2405.922Durbin-Watson stat2. Prob(F-statistic)0.Y=124.5043-1.X1+0.X2+0.X4 3. -3. 3. 11.05532 R2=0. R-2=0. F=2405.9229、Y与X1、X3、X4拟合:Dependent Varia

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论