版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2017高考一轮复习 立体几何 一一选择题(共24小题)1(2014郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()ABCD2(2014秋城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCDA1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()ABCD3(2012武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()ABCD4(2013鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()AB1CD5(2012陕
2、西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()ABCD6(2015铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A1B2C3D47(2015秋哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b的线段,则a+b的最大值为()A2B2C4D28(2015北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A1BCD29已知某个几何体的三视图如图所示根据图中标出的尺寸(单位:cm)可得这个
3、几何体的体积是cm3()ABCD410(2013秋秦安县期末)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()ABCD11(2014唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A8B16C32D6412(2016北海一模)已知四棱锥PABCD的顶点都在球O上,底面ABCD是矩形,平面PAD平面ABCD,PAD为正三角形,AB=2AD=4,则球O的表面积为()ABC32D6413(2015沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()AB2C3D414正四面体的内切球与外接球
4、的半径的比等于()A1:3B1:2C2:3D3:515(2014道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A6B54C12D4816(2014大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()ABCD17(2015新课标II)已知A,B是球O的球面上两点,AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A36B64C144D25618(2015秋晋中期末)表面积为40的球面上有四点S、A、B、C且SAB是等边三角形
5、,球心O到平面SAB的距离为,若平面SAB平面ABC,则三棱锥SABC体积的最大值为()A2BC6D19(2015新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()ABCD20(2015秋淮南期末)如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线BA,M,OA1不共面CA,M,C,O不共面DB,B1,O,M共面21(2015衡阳县校级模拟)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()AMN与C
6、C1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行22(2015秋眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()ABCD23(2015广东)若直线 l1和l2 是异面直线,l1在平面 内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交24(2016延庆县一模)已知两条直线a,b和平面,若ab,b,则“a”是“b”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件二填空题(共6小题)25(2014长
7、春一模)已知三棱柱ABCA1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12,则该三棱柱的体积为26(2013长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=27(2016石嘴山校级二模)在三棱锥PABC中,底面ABC是等腰三角形,BAC=120°,BC=2,PA平面ABC,若三棱锥PABC的外接球的表面积为8,则该三棱锥的体积为28(2015南昌一模)已知直三棱柱ABCA1B1C1中,BAC=90°,侧面BCC1B1的面积为2,则直三棱柱ABCA1B1C1外接球表面积的最小值为29(2015四川)在三棱住ABCA1B1C1
8、中,BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥PAMN的体积是30(2016春厦门校级期中)a,b,c是空间中互不重合的三条直线,下面给出五个命题:若ab,bc,则ac;若ab,bc,则ac;若a与b相交,b与c相交,则a与c相交;若a平面,b平面,则a,b一定是异面直线;上述命题中正确的是(只填序号)2017高考一轮复习 立体几何 一参考答案与试题解析一选择题(共24小题)1(2014郴州三模)用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()ABCD【分析
9、】根据题意几何体是球缺,利用球的视图是圆,看不到的线要画虚线,可得答案【解答】解:用一个平行于水平面的平面去截球,截得的几何体是球缺,根据俯视图的定义,几何体的俯视图是两个同心圆,且内圆是截面的射影,内圆应是虚线,故选:B【点评】本题考查了几何体的三视图,要注意,看不到的线要画虚线2(2014秋城区校级期末)如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCDA1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()ABCD【分析】直接利用三视图的定义,正视图是光线从几何体的前面向后面正投影得到的投影图,据此可以判断出其正视图【解答】解:由正视图的定义可知:点A、
10、A1、C1在后面的投影点分别是点D、D1、C1,线段A1B在后面的投影面上的投影是以D1为端点且与线段A1B平行且相等的线段,即可得正视图故选:A【点评】从正视图的定义可以判断出题中的正视图,同时要注意能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示3(2012武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为()ABCD【分析】通过三视图的画法,几何体的主视图的轮廓是一个正方形,在作三视图时,能看见的线作成实线,被遮住的线作成虚线,由此规则判断各个选项即可【解答】解:对于选项A,几何体的主视图的轮廓是一个正
11、方形,故A不正确;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不正确;对于D,正视图是正方形符合题意,其中的两条实绩符合斜视图的特征,故D不正确故选B【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”高考常考题型4(2013鹰潭校级模拟)已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()
12、AB1CD【分析】由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,画出其直观图,可得侧视图为直角三角形,且直角边长分别为1,代入公式计算【解答】解:由三棱锥的主视图与俯视图知三棱锥的底面与其中一个侧面都是直角三角形,其直观图如图:SB=,SO=1,BC=1,CM=,几何体的侧视图为直角三角形,且直角边长分别为1,侧视图的面积S=故选C【点评】本题考查了由主视图与俯视图求侧视图的面积,解题的关键是判断主视图与俯视图的数据所对应的几何量,画出其直观图5(2012陕西)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()ABCD【分析】直接利用三视
13、图的画法,画出几何体的左视图即可【解答】解:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,AD1在右侧的射影是正方形的对角线,B1C在右侧的射影也是对角线是虚线如图B故选B【点评】本题考查几何体的三视图的画法,考查作图能力6(2015铜川模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为()A1B2C3D4【分析】由题意可知,几何体为三棱锥,将其放置在长方体模型中即可得出正确答案【解答】解:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示(图中红色部分),利用长方体模型可知,
14、此三棱锥的四个面中,全部是直角三角形故选:D【点评】本题考查学生的空间想象能力,由三视图还原实物图,是基础题7(2015秋哈尔滨校级月考)某几何体的一条棱长为3,在该几何体的正视图中,这条棱的投影长为2的线段,在该几何体的侧视图和俯视图中,这条棱长的投影长分别是a和b的线段,则a+b的最大值为()A2B2C4D2【分析】由棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,设出三度,利用勾股定理,基本不等式求出最大值【解答】解:将已知中的棱和它在三视图中的投影扩展为长方体,三视图中的三个投影,是三个面对角线,则设长方体的三度:x、y、z,所以x2+y2+z2=9,x2+y2
15、=a2,y2+z2=b2,x2+z2=4可得a2+b2=14(a+b)22(a2+b2)a+b2,a+b的最大值为2,故选:B【点评】本题考查三视图,几何体的结构特征,考查空间想象能力,基本不等式的应用,是中档题8(2015北京)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A1BCD2【分析】几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,结合直观图求相关几何量的数据,可得答案【解答】解:由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,底面为正方形如图:其中PB平面ABCD,底面ABCD为正方形PB=1,AB=1,AD=1,BD=,PD=PC=该几何体最长棱的棱长为:故选:C【
16、点评】本题考查了由三视图求几何体的最长棱长问题,根据三视图判断几何体的结构特征是解答本题的关键9已知某个几何体的三视图如图所示根据图中标出的尺寸(单位:cm)可得这个几何体的体积是cm3()ABCD4【分析】由三视图知几何体是一个三棱锥,三棱锥的底面是一个底边是2,高是2的三角形,三棱锥的高是2,根据三棱锥的体积公式得到结果【解答】解:原几何体为底面是高为2,底边长是2的三角形的三棱锥,该三棱锥的高是2,所以体积是=故选:A【点评】本题考查由三视图还原几何体并且看出几何体各个部分的长度,本题解题的关键是要求体积需要求出几何体的底面面积和高本题是一个基础题10(2013秋秦安县期末)一个圆锥过轴
17、的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为()ABCD【分析】设出球的半径,求出圆锥的底面半径然后求出球的面积以及圆锥的全面积,即可求出结果【解答】解:如图,设球半径为R,则锥的底面半径 r=R,锥的高 h=RS锥=S底面积+S侧=r2+Rr= (R)2+×RR=R2S球=4R2S锥:S球=,故选:D【点评】本题考查球的内接体,圆锥的表面积以及球的面积的求法,考查计算能力11(2014唐山一模)正三棱锥的高和底面边长都等于6,则其外接球的表面积为()A8B16C32D64【分析】由题意推出球心O到四个顶点的距离相等,利用直角三角形BO
18、E,求出球的半径,即可求出外接球的表面积【解答】解:如图,球心O到四个顶点的距离相等,正三棱锥ABCD中,底面边长为6,BE=2,在直角三角形BOE中,BO=R,EO=6R,BE=2,由BO2=BE2+EO2,得R=4外接球的半径为4,表面积为:64故选:D【点评】本题是基础题,考查空间想象能力,计算能力;利用直角三角形BOE是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提12(2016北海一模)已知四棱锥PABCD的顶点都在球O上,底面ABCD是矩形,平面PAD平面ABCD,PAD为正三角形,AB=2AD=4,则球O的表面积为()ABC32D64【分析】求出PAD所在圆的半径,利用
19、勾股定理求出球O的半径R,即可求出球O的表面积【解答】解:令PAD所在圆的圆心为O1,PAD为正三角形,AD=2,则圆O1的半径r=,因为平面PAD底面ABCD,AB=4,所以OO1=AB=2,所以球O的半径R=,所以球O的表面积=4R2=故选:B【点评】本题考查球O的表面积,考查学生的计算能力,比较基础13(2015沈阳校级模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为()AB2C3D4【分析】过圆锥的旋转轴作轴截面,得ABC及其内切圆O1和外切圆O2,且两圆同圆心,即ABC的内心与外心重合,易得ABC为正三角形,由题意O1的半径为r=1,进而求出圆锥的底面半径和
20、高,代入圆锥体积公式,可得答案【解答】解:过圆锥的旋转轴作轴截面,得ABC及其内切圆O1和外切圆O2,且两圆同圆心,即ABC的内心与外心重合,易得ABC为正三角形,由题意O1的半径为r=1,ABC的边长为2,圆锥的底面半径为,高为3,V=故选:C【点评】本题考查的知识点是旋转体,圆锥的体积,其中根据已知分析出圆锥的底面半径和高,是解答的关键14正四面体的内切球与外接球的半径的比等于()A1:3B1:2C2:3D3:5【分析】画出图形,确定两个球的关系,通过正四面体的体积,求出两个球的半径的比值即可【解答】解:设正四面体为PABC,两球球心重合,设为O设PO的延长线与底面ABC的交点为D,则PD
21、为正四面体PABC的高,PD底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高设正四面体PABC底面面积为S将球心O与四面体的4个顶点PABC全部连接,可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面每个正三棱锥体积V1=Sr 而正四面体PABC体积V2=S(R+r)根据前面的分析,4V1=V2,所以,4Sr=S(R+r),所以,R=3r故选:A【点评】本题是中档题,考查正四面体的内切球与外接球的关系,找出两个球的球心重合,半径的关系是解题的关键,考查空间想象能力,计算能力15(2014道里区校级三模)已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正
22、方形,则该正四面体的内切球的表面积为()A6B54C12D48【分析】由正四面体的俯视图是边长为2的正方形,所以此四面体一定可以放在棱长为2的正方体中,求出正四面体的边长,可得正四面体的内切球的半径,即可求出正四面体的内切球的表面积【解答】解:正四面体的俯视图是如图所示的边长为3正方形ABCD,此四面体一定可以放在正方体中,我们可以在正方体中寻找此四面体如图所示,四面体ABCD满足题意,由题意可知,正方体的棱长为3,正四面体的边长为6,正四面体的高为2正四面体的内切球的半径为,正四面体的内切球的表面积为4R2=6故选:A【点评】本题的考点是由三视图求几何体的表面积,需要由三视图判断空间几何体的
23、结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的表面积公式分别求解,考查了空间想象能力16(2014大庆二模)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()ABCD【分析】由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案【解答】解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图则这个几何
24、体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=则这个几何体的外接球的表面积为S=4R2=4×()2=故选:A【点评】本题考查的知识点是由三视图求面积、体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征是解答本题的关键17(2015新课标II)已知A,B是球O的球面上两点,AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A36B64C144D256【分析】当点C位于垂直于面AOB的直径端点时,三棱锥OABC的体积最大,利用三棱锥OABC体积的最大值为36,求出半径,即可求出
25、球O的表面积【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥OABC的体积最大,设球O的半径为R,此时VOABC=VCAOB=36,故R=6,则球O的表面积为4R2=144,故选C【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥OABC的体积最大是关键18(2015秋晋中期末)表面积为40的球面上有四点S、A、B、C且SAB是等边三角形,球心O到平面SAB的距离为,若平面SAB平面ABC,则三棱锥SABC体积的最大值为()A2BC6D【分析】作出直观图,根据球和等边三角形的性质计算SAB的面积和棱锥的最大高度,代入体积公式计算【
26、解答】解:过O作OF平面SAB,则F为SAB的中心,过F作FESA于E点,则E为SA中点,取AB中点D,连结SD,则ASD=30°,设球O半径为r,则4r2=40,解得r=连结OS,则OS=r=,OF=,SF=2DF=EF=,SE=SA=2SE=2,SSAB=SA2=6过O作OM平面ABC,则当C,M,D三点共线时,C到平面SAB的距离最大,即三棱锥SABC体积最大连结OC,平面SAB平面ABC,四边形OMDF是矩形,MD=OF=,OM=DF=CM=2CD=CM+DM=3三棱锥SABC体积V=SSABCD=6故选C【点评】本题考查了棱锥的体积计算,空间几何体的作图能力,准确画出直观图
27、找到棱锥的最大高度是解题关键19(2015新课标II)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()ABCD【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,正方体切掉部分的体积为×1×1×1=,剩余部分体积为1=,截去部分体积与剩余部分体积的比值为故选:D【点评】本题考查了由三视图判断几何体的形状,求几何体的体积20(2015秋淮南期末)如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线
28、A1C交平面AB1D1于点M,则下列结论正确的是()AA,M,O三点共线BA,M,OA1不共面CA,M,C,O不共面DB,B1,O,M共面【分析】本题利用直接法进行判断先观察图形判断A,M,O三点共线,为了要证明A,M,O三点共线,先将M看成是在平面ACC1A1与平面AB1D1的交线上,利用同样的方法证明点O、A也是在平面ACC1A1与平面AB1D1的交线上,从而证明三点共线【解答】解:连接A1C1,AC,则A1C1AC,A1、C1、C、A四点共面,A1C平面ACC1A1,MA1C,M平面ACC1A1,又M平面AB1D1,M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与
29、平面AB1D1的交线上,A、M、O三点共线故选:A【点评】本题主要考查了平面的基本性质及推论、三点共线及空间想象能力,属于基础题21(2015衡阳县校级模拟)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()AMN与CC1垂直BMN与AC垂直CMN与BD平行DMN与A1B1平行【分析】先利用三角形中位线定理证明MNBD,再利用线面垂直的判定定理定义证明MN与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D【解答】解:如图:连接C1D,BD,在三角形C1DB中,MNBD,故C正确;CC1平面ABCD,CC1BD,MN与C
30、C1垂直,故A正确;ACBD,MNBD,MN与AC垂直,B正确;A1B1与BD异面,MNBD,MN与A1B1不可能平行,D错误故选D【点评】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键22(2015秋眉山期末)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的一个图是()ABCD【分析】利用公理三及推论判断求解【解答】解:在A图中:分别连接PS,QR,则PSQR,P,S,R,Q共面在B图中:过P,Q,R,S可作一正六边形,如图,故P,Q,R,S四点共面在C图中:分别连接PQ,RS,则PQRS,P,Q
31、,R,S共面D图中:PS与RQ为异面直线,P,Q,R,S四点不共面故选:D【点评】本题考查四点不共面的图形的判断,是基础题,解题时要认真审题,注意平面性质及推论的合理运用23(2015广东)若直线 l1和l2 是异面直线,l1在平面 内,l2在平面内,l是平面与平面的交线,则下列命题正确的是()Al与l1,l2都不相交Bl与l1,l2都相交Cl至多与l1,l2中的一条相交Dl至少与l1,l2中的一条相交【分析】可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可退出和l1,l2异面矛盾,这样便说明D正确【解答】
32、解:Al与l1,l2可以相交,如图:该选项错误;Bl可以和l1,l2中的一个平行,如上图,该选项错误;Cl可以和l1,l2都相交,如下图:,该选项错误;D“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;l和l1,l2都共面;l和l1,l2都平行;l1l2,l1和l2共面,这样便不符合已知的l1和l2异面;该选项正确故选D【点评】考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确24(2016延庆县一模)已知两条直线a,b和平面,若ab,b,则“a”是“b”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】分别判断出充分性和
33、不必要性即可【解答】解:若ab,b,a,则b,是充分条件,若ab,b,b,推不出a,不是必要条件,则“a”是“b”的充分不必要条件,故选:A【点评】本题考查了充分必要条件,考查线面、线线的位置关系,是一道基础题二填空题(共6小题)25(2014长春一模)已知三棱柱ABCA1B1C1底面是边长为的正三角形,侧棱垂直于底面,且该三棱柱的外接球表面积为12,则该三棱柱的体积为3【分析】求出底面中心到底面三角形顶点的距离,求出外接球的半径,然后求出棱柱的高,即可求出所求体积【解答】解:设球半径R,上下底面中心设为M,N,由题意,外接球心为MN的中点,设为O,则OA=R,由4R2=12,得R=OA=,又
34、AM=,由勾股定理可知,OM=1,所以MN=2,即棱柱的高h=2,所以该三棱柱的体积为××2=3故答案为:3【点评】本题是基础题,考查几何体的外接球的表面积的应用,三棱柱体积的求法,考查计算能力26(2013长春一模)若一个正四面体的表面积为S1,其内切球的表面积为S2,则=【分析】设正四面体ABCD的棱长为a,利用体积分割法计算出内切球半径r=a,从而得到S2关于a的式子利用正三角形面积公式,算出正四面体的表面积S1关于a的式子,由此不难得出S1与S2的比值【解答】解:设正四面体ABCD的棱长为a,可得等边三角形ABC的高等于a,底面中心将高分为2:1的两段底面中心到顶点
35、的距离为×a=a可得正四面体ABCD的高为h=a正四面体ABCD的体积V=×SABC×a=a3,设正四面体ABCD的内切球半径为r,则4××SABC×r=a3,解得r=a内切球表面积S2=4r2=正四面体ABCD的表面积为S1=4×SABC=a2,=故答案为:【点评】本题给出正四面体,求它的表面积与其内切球表面积的比值,着重考查了正四面体的性质、球的表面积公式和多面体的外接、内切球算法等知识,属于中档题27(2016石嘴山校级二模)在三棱锥PABC中,底面ABC是等腰三角形,BAC=120°,BC=2,PA平面ABC,若三棱锥PABC的外接球的表面积为8,则该三棱锥的体积为【分析】作出草图,根据底面ABC与截面圆的关系计算截面半径,根据球的面积计算球的半径,利用勾股定理计算球心到截面的距离,得出棱锥PABC的高【解答】解:过A作平面ABC所在球截面的直径AD,连结BD,CD,AB=AC,BAC=120°,ABC=ACB=ADC=ADB=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《应用人工智能》2021-2022学年期末试卷
- 石河子大学《数字电路》2022-2023学年期末试卷
- 石河子大学《口腔颌面外科学二》2021-2022学年第一学期期末试卷
- 石河子大学《编译原理》2022-2023学年第一学期期末试卷
- 沈阳理工大学《数学建模与应用》2023-2024学年第一学期期末试卷
- 沈阳理工大学《口译理论与实践》2022-2023学年第一学期期末试卷
- 沈阳理工大学《移动终端应用程序开发》2022-2023学年期末试卷
- 沈阳理工大学《电器学》2023-2024学年期末试卷
- 沈阳理工大学《Python程序设计》2021-2022学年期末试卷
- 国际贸易综合技能实训中对合同订立报告
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 碳排放核算与报告要求 第XX部分:铅冶炼企业
- 物业及物业管理:提升旅游景区品质
- 财政收支业务管理制度
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 2024中国铁路成都局招聘笔试冲刺题(带答案解析)
- 肺功能进修总结汇报
- 精神科病例分享演讲比赛
- 大学生职业生涯规划测绘地理信息技术专业
- 小学新教材解读培训
- MOOC 全球化与中国文化-西南交通大学 中国大学慕课答案
评论
0/150
提交评论