版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PQoxyy=f(x)割割线线切线切线T1.曲线在某一点切线的斜率曲线在某一点切线的斜率)斜率无限趋限趋近点P处切,时0无限趋限当(PQkx)()(xxfxxfkPQ回顾回顾复习回顾:复习回顾: 设物体作直线运动所经过的路程为设物体作直线运动所经过的路程为s=f(t)。 以以t0为起始时刻,物体在为起始时刻,物体在 t时间内的平均速度为时间内的平均速度为 vttfttfts)()(00就是物体在就是物体在t0时刻时刻的的瞬时速度瞬时速度,即,即 v 可作为物体在可作为物体在t0时刻的速度的近似值,时刻的速度的近似值, t 越小,越小,近似的程度就越好。近似的程度就越好。所以当所以当 t0时,比
2、值时,比值ttfttfts)()(00。2.瞬时速度瞬时速度ts时当的瞬时速度在0)()(000tttfttftv 以平均加速度代替瞬时加速度,然后通过以平均加速度代替瞬时加速度,然后通过取极限,取极限, 从瞬时加速度的近似值过渡到瞬时加速从瞬时加速度的近似值过渡到瞬时加速度的精确值。度的精确值。3.物体在某一时刻的加速度称为物体在某一时刻的加速度称为瞬时加速度瞬时加速度.(即(即t=t0时速度相对时间的瞬时变化率)时速度相对时间的瞬时变化率) 其实函数在某一点处的瞬时变化率其实函数在某一点处的瞬时变化率导数。导数。时当的瞬时速度在0)()(000tttfttftv 导数导数处的在点叫做函数并
3、把0)(xxfyA一一. .导数的概念导数的概念0,)()()(0000 xxxfxxfxyxfyxx当有定义,有定义,在区间(在区间(函数函数),)(baxfy ),0bax( ,处有增量处有增量在在如果自变量如果自变量xxx 0);()(00 xfxxfy 增量增量之间的之间的到到在在xxxxfy 00)(.)()(00 xxfxxfxy 时,时,如果当如果当0 xAxy处处在点在点我们就说函数我们就说函数0)(xxfy 相应地有相应地有那么函数那么函数 y就叫做函数就叫做函数比值比值xy 平均变化率平均变化率即即,可导,可导,导数导数0,xxy 记为记为由定义求导数(三步法由定义求导数(
4、三步法)步骤步骤:);()()1(00 xfxxfy 求增量求增量;)()()2(00 xxfxxfxy 算比值算比值时在求0.) 3(0 xxyyxx) )2()2(,)1()(.22ffxxf和求若例提示:本题应注意“导数”和“导数值”之间的区别.例例1.1.求求y=xy=x2 2+2+2在点在点x=1x=1处的导数处的导数解:解:222)(2)21(2)1(xxxy xxxxxy 2)(222|0,21xyxxxy时当变题变题. .求求y=xy=x2 2+2+2在点在点x=ax=a处的导数处的导数二、函数在一区间上的导数:二、函数在一区间上的导数: 如果函数如果函数 f(x)在开区间在开
5、区间 (a,b) 内每一点都可导,就说内每一点都可导,就说f(x)在开区间在开区间 (a,b)内可导这时,对于开区间内可导这时,对于开区间 (a,b)内每内每一个确定的值一个确定的值 x0,都对应着一个确定的导数,都对应着一个确定的导数 f (x0),这,这样就在开区间样就在开区间(a,b)内构成了一个新的函数,我们把这一内构成了一个新的函数,我们把这一新函数叫做新函数叫做 f(x) 在开区间在开区间(a,b)内的内的导函数导函数,简称为,简称为导数导数,记作记作)()(xyyxf需指明自变量时记作或即即时的值当0,)()()(xxxfxxfxyyxff (x0)与与f (x)之间的关系:之间的关系: f (x 0)f (x)0 xx 当当x0(a,b)时时,函数函数y=f(x)在点在点x0处的导数处的导数f (x0)等于等于函数函数f(x)在开区间在开区间(a,b)内的导数内的导数f (x)在点在点x0处的函数值处的函数值 如果函数如果函数y=f(x)在点在点x0处可导处可导,那么函数那么函数y=f(x)在点在点X0处连续处连续.例例3 .已知已知.2,处的切线方程在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《传感器与检测技术》练习题集
- 【初中物理】光的折射单元测试(培优卷)2024-2025学年苏科版物理八年级上册
- 2023年标准员之基础知识练习题(二)及答案
- 唐山-PEP-2024年11版小学三年级英语第1单元真题
- 2024年07版小学5年级上册英语第二单元期末试卷
- 收纳箱生产企业的账务处理-记账实操
- 中建信息化管理手册
- 强化研究-团结协作-共创佳绩
- 经济数学 课件 ch01 函数、极限及其应用
- 2024年高考语文二轮复习:语言的表达效果类新题型(练习)(解析版)
- 三国演义第三回读后感100字 三国演义第三回读后感1000字以上(三篇)
- 第三章人本心理治疗
- 双阳区巡游出租汽车驾驶员从业资格考试区域科目考试题库
- 口腔修复学名解及案例分析题
- 带电粒子在电磁场中的运动
- 制糖工艺基础知识及煮糖技术(上课)
- 企业法人委托书模板
- JJF 1132-2005组合式角度尺校准规范
- GB/T 799-2020地脚螺栓
- GB/T 6500-1986羊毛回潮率试验方法烘箱法
- FZ/T 64078-2019熔喷法非织造布
评论
0/150
提交评论