数学建模论文武汉市房地产调控问题分析_第1页
数学建模论文武汉市房地产调控问题分析_第2页
数学建模论文武汉市房地产调控问题分析_第3页
数学建模论文武汉市房地产调控问题分析_第4页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六届华中地区大学生数学建模邀请赛承诺书我们仔细阅读了第六届华中地区大学生数学建模邀请赛的竞赛细则。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的 , 如果引用别人的成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们的参赛报名号为:10520031参赛队员(签名) :队员 1:队员 2:队员 3:

2、武汉工业与应用数学学会第六届华中地区大学生数学建模邀请赛组委会第六届华中地区大学生数学建模邀请赛编号专用页选择的题号:B参赛的编号: 10520031(以下内容参赛队伍不需要填写)竞赛评阅编号:第六届华中地区大学生数学建模邀请赛武汉市房地产调控问题分析【摘要】房地产业是国民经济的先导性、支柱性和基础性产业, 其价格变动对宏观经济和地方经济都又动态影响。本文搜集了武汉市七个区近八年来 GDP、大宗商品价格指数、商品住宅价格指数以及城镇居民可支配收入数据, 在理论分析的基础上, 针对武汉市住宅价格供求影响因素设计了数学模型。 实证检验结果表明, 商品住宅价格变化数据、 大宗商品价格变化数据、 工资

3、收入和 GDP数据之间存在着相关关系。 再次基础上, 本文构建了基于武汉市 GDP数据、居民可支配收入、大宗商品价格指数着三个变量的 VAR模型,分析三个变量与商品住宅价格的长期和短期的格兰杰因果关系, 运用 VEC模型和 ARIMA 模型研究商品住宅价格的变动趋势, 以及其增长速度与 GDP增长速度之间的关系, 对变量之间的动态联系提供严密的说明,反应变量之间的长期均衡关系。【关键词】住宅价格;大宗商品价格;调控政策;VEC模型; ARIMA模型一、问题重述(一)问题背景从2002年8月26日六部委颁发 217号文件起,我国房地产调控历史走过了十余年。细心盘点房地产调控的十年,大致可以划分为

4、四个阶段:第一阶段,调控起步期 (2002 年至 2004年 ) :主要以收紧土地供给和房地产信贷为主要手段,以抑制房地产市场投资过热为目的。第二阶段,调控加码期 (2005 年至 2008年上半年 ) :加码的手段以结构性调整为主,在抑制房地产投资过热的同时, 提出稳房价的新目标。 国八条、新国八条、国六条相继出台, 重点打击囤地行为、 改善商品房和保障房供应结构、 提高首付比例、推出税收调控手段,改善供给结构的同时开始调节商品房投资性需求。第三阶段,紧急救市期 (2008 年下半年至 2009年上半年 ) :为应对全球性金融危机对中国经济的冲击, 政府政策全面转向, 以楼市稳定来支持经济稳

5、定, 从中央到地方全面放松各项房地产调控措施,甚至出台利率打折等购房刺激政策。第四阶段,调控全面加码期 (2010 年至今 ) :遏制房价过快上涨或促进房价合理回归成为突出调控目标。 国十一条、新国十条、 限购令等号称史上最严厉调控措施相继出炉,涵盖土地供给、信贷、税收、保障房等各方面的住房差别化调控体系逐渐形成。近十年,从单一供给管理转向供给与需求综合管理, 从防止房地产市场投资过热转向重点遏制房价过快上涨, 我国房地产调控目标逐渐清晰, 政策体系逐渐建立。然而,虽然调控取得一定成绩,但调控多为定性的行政手段,梁化调控方案很少。并且调控政策一般只是短暂实用某一特定时期。 近期武汉市出台调控目

6、标:房价的增长速度不高于 GDP的增长速度。(二)需要解决的问题1、收集整理武汉市近十年各片区商品住宅价格变化数据、大宗商品价格变化数据、工资收入和 GDP数据,挖掘它们之间的关系。2、根据近十年已知数据建立数学模型并预测2013年6月至 12月间商品住宅价格,大宗商品价格变化趋势。3、结合武汉市市民工资收入的具体情况,评价调控政策“商品住宅价格的增长速度不高于 GDP的增长速度”在多长时间内有效,并建立数学模型模拟商品1住宅价格、 GDP增速、市民工资水平之间的关系。二、问题分析对于问题一,根据数据的完整性和可获得性,我们将数据收集范围确定为武汉市武昌区、青山区、洪山区、江汉区、硚口区、江岸

7、区、汉阳区七个区自2003年至 2010年八个年度的商品住宅价格变化数据、大宗商品价格变化数据、 工资收入和 GDP数据,其中商品住宅价格变化数据采用武房指数等价代替,大宗商品价格采用工业生产者购进价格指数代替,工资收入采用城镇居民可支配收入代替。分别以每个区为单位, 检验四个指标数据之间的相关性,可以探究它们之间的关系。对于问题二,我们建立 VEC模型和 ARIMA模型,对商品住宅价格和大宗商品价格分别进行建立模型,近似表示其变化趋势。对于问题三,以前两个步骤的计算为基础,计算商品住宅价格变化和GDP变化趋势线的交点,得到调控政策有效性的区间。三、模型假设针对本问题建立如下合理假设(1)根据

8、统计年鉴等资料整理的数据准确可靠;(2)2013 年 6 月至 12 月间中无对商品住宅价格,大宗商品价格有重大影响的重大经济突发事件、环境气候问题等事件发生;(3)预测期间我国各项宏观经济政策能及时准确地落实;(4)我国对外经济政策无重大调整。四、问题求解(一)数据收集整理研究对象数据的收集与整理, 是建立数学模型过程最为费时费力的工作也是对模型质量影响极大的一项工作。本文选取的数据来自 武汉市统计年鉴 、湖北省统计年鉴、中国统计年鉴、世界银行(world bank)网站、中国流通产业网,武汉市住房保障和房屋管理局网站以及其他一些官方网站的数据。本文分析的四个指标为:商品住宅价格、GDP增速

9、、市民工资水平、大宗商品价格指数。在数据收集过程中, 由于宏观经济变量数据的基期多为月度或者更长的周期,2因此为了便于衡量比较中国大宗商品价格指数与我国经济变量的长期趋势关系,同时也为了统一数据基期, 本文采用月度数据作为时间指标。同时考虑数据的可得性,本文选取样本区间为2003年1月到 2010年12月的数据。(二)相关系数我们将商品住宅价格、 GDP增速、市民工资水平、大宗商品价格指数对应的数据分别用 EVIEWS软件做相关性检验,得到的结果如下:表1武昌区CorrelationDZSPGDPSALARYWFZSDZSP1.000000GDP0.9485361.000000SALARY0.

10、9214470.9734311.000000WFZS0.9519970.9787970.9936251.000000表2汉阳区CorrelationDZSPGDPSALARYWFZSDZSP1.000000GDP0.9605171.000000SALARY0.9248620.9519811.000000WFZS0.9396730.9603830.993590 1.000000表3江岸区CorrelationDZSPGDPSALARYWFZSDZSP1.000000GDP0.8948861.000000SALARY0.9227900.9946171.000000WFZS0.9405130.976

11、5000.988231 1.000000表4江汉区CorrelationDZSPGDPSALARYWFZSDZSP1.000000GDP0.9375331.000000SALARY0.9265630.9803501.000000WFZS0.9002680.9722460.984118 1.000000表5硚口区CorrelationDZSPGDPSALARYWFZSDZSP1.000000GDP0.9623961.000000SALARY0.9282850.9587811.000000WFZS0.9339910.9687990.931536 1.000000表6青山区CorrelationDZ

12、SPGDPSALARYWFZSDZSP1.000000GDP0.9633101.000000SALARY0.9364070.9223631.0000003WFZS0.9492310.9475880.989010 1.000000表7洪山区CorrelationDZSPGDPSALARY WFZSDZSP1.000000GDP0.9633101.000000SALARY0.9364070.9223631.000000WFZS0.9492310.9475880.989010 1.000000从以上相关性检验可以看出,武汉市各个区的大宗商品价格指数( DZSP)、国民生产总值( GDP)、市民平均工

13、资( SALARY)和商品住宅价格( WFZS)两两之间都有很强的线性相关。接下来,用单位根检验对数据稳定性进行检验。(三) VEC模型VEC模型即向量误差修正模型,具有同时反映长期静态关系和短期动态关系的功能。1. 单位根检验当采用时间序列模型时, 所用时间序列应具有平稳性, 但是经济变量往往非平稳的,用非平稳变量建立回归模型是会带来伪回归问题。 向量自回归模型同样是要求所用时间序列应具有平稳性。 因此在进行协整分析之前, 首先对各经济变量进行单位根检验, 分析各经济变量的平稳性。 如不平稳则通过差分使其变为平稳的时间序列。采用 ADF方法来检验变量的平稳性。2. 各片区回归模型首先我们对每

14、个指标进行单位根检验,我们首先尝试了求二阶分差的单位根检验,我们以武昌区大宗商品价格指数和GDP作为例证,后续四个指标有相似结果,不再展开分析。表 8武昌区大宗商品价格的二阶分差ADF检验Null Hypothesis: D(DZSP,2) has a unit roott-StatisticProb.*Augmented Dickey-Fuller test statistic-2.0351470.2663Test critical values:1% level-6.4236375% level-3.98499110% level-3.120686可以看出, 序列是非平稳的,可能会存在伪回

15、归。我们再对武昌区大宗商品价格做一阶分差 ADF检验,结果如下:表 9武昌区大宗商品价格的一阶分差ADF检验Null Hypothesis: DDZSP has a unit roott-StatisticProb.*Augmented Dickey-Fuller test statistic-2.9150320.09804Test critical values:1% level-5.1198085% level-3.51959510% level-2.898418相对而言, Prob 值已经大大降低,可以采纳。武昌区GDP等指标也同样具有相似的结果。表 10武昌区 GDP的二阶分差 ADF

16、检验Null Hypothesis: D(GDP,2) has a unit roott-StatisticProb.*Augmented Dickey-Fuller test statistic-2.4114560.1852Test critical values:1% level-6.4236375% level-3.98499110% level-3.120686表 11武昌区 GDP的一阶分差 ADF检验Null Hypothesis: DGDP has a unit roott-StatisticProb.*Augmented Dickey-Fuller test statistic

17、-4.9482390.0168Test critical values:1% level-5.6046185% level-3.69485110% level-2.982813以下为武汉市七个区四个指标得出的同阶回归模型:表12武昌区同阶回归模型Dependent Variable: DDZSPVariableCoefficientStd. Errort-StatisticProb.DGDP0.0017870.1599370.0111710.9918DSALARY-0.3094701.417081-0.2183860.8411DWFZS0.7825800.4403811.7770520.173

18、6C-0.0150140.085772-0.1750470.8722Y0.002X 10.309 X 20.783 X30.015表 13青山区同阶回归模型Dependent Variable: DDZSPVariableCoefficientStd. Errort-StatisticProb.DGDP0.1181480.1295790.9117880.4291DSALARY1.0138612.0015030.5065500.6474DWFZS-0.2213520.518532-0.4268830.6982C-0.0269800.095410-0.2827760.7957Y0.118X11.0

19、14 X 20.221X 30.027表 14洪山区同阶回归模型Dependent Variable: DDZSPVariableCoefficientStd. Errort-StatisticProb.DGDP-0.4449341.065925-0.4174150.71695DSALARY-0.2131230.266781-0.7988710.5082DWFZS2.2835381.7748071.2866400.3270C0.2261690.8241890.2744140.8095Y0.445X1 0.213X 22.284 X 30.226表 15江汉区同阶回归模型Dependent Va

20、riable: DDZSPVariableCoefficientStd. Errort-StatisticProb.DGDP-0.0614000.251655-0.2439840.8230DSALARY-0.2578382.435640-0.1058600.9224DWFZS-0.2778390.726873-0.3822390.7278C0.0700220.1875820.3732880.7338Y0.061X1 0.258X 20.278 X 30.070表 16硚口区同阶回归模型Dependent Variable: DDZSPVariableCoefficientStd. Errort

21、-StatisticProb.DGDP0.1652380.1987960.8311960.4668DSALARY0.5686691.4320130.3971120.7179DWFZS-0.1572070.238377-0.6594910.5567C-0.0102040.085465-0.1193960.9125Y0.165 X10.569X 20.157 X 30.010表 17江岸区同阶回归模型Dependent Variable: DDZSPMethod: Least SquaresVariableCoefficientStd. Errort-StatisticProb.DGDP-0.54

22、46560.320186-1.7010580.1875DSALARY1.5031551.5956010.9420620.4157DWFZS-0.0345020.411839-0.0837760.9385C-0.0027500.082022-0.0335270.9754Y0.545X1 1.503 X 2 0.035 X30.003表 18汉阳区同阶回归模型Dependent Variable: DDZSPMethod: Least SquaresVariableCoefficientStd. Errort-StatisticProb.DGDP0.0532260.1340800.3969730.

23、7179DSALARY-0.1602771.036076-0.1546970.8869DWFZS0.4390270.4758040.9227070.4242C-0.0028520.058816-0.0484870.9644Y0.053X1 0.160X 20.476 X30.0596上述模型与理论上商品住宅价格、市民平均工资水平、大宗商品价格指数、武房指数之间的经济关系相符。通过以上分析, 验证了国内商品住宅价格、 市民平均工资水平、 大宗商品价格指数、武房指数四个指数间的相互依存的经济关系。(四)基于 ARIMA模型的数据预测1.ARIMA模型( autoregressive integra

24、ted moving)( 1)符号说明p时间序列滞后项数d差分阶数q残差滞后项数Y时间序列Y*Y 的一阶差分u白噪音,参数ACF自相关系数(2) 模型的建立分析问题二是一个时间序列的预测问题,考虑到时间序列本身是一种随机过程,本着计量经济学中 “让数据自己说话” 的原则,本文采用了 ARIMA模型进行建模。(3) 基本原理平稳随机过程( stationary stochastic process)定义:若一个随机过程的均值和方差在时间保持是常数, 并且在任何两时期之间的协方差值仅依赖于该两时期间的距离或滞后, 而不依赖于计算这个协方差的实际时间, 则称之为平稳随机过程。满足平稳随机过程的时间序

25、列称为平稳时间序列。 时间序列的平稳性可通过序列图形检验法,自相关函数 (ACF) 和相关图检验和增广迪基 - 富勒 (ADF) 检验法进行检验。ARIMA模型即自回归求积移动平均法,又称(Box Jenkins BJ)方法论。其基本形式为: ARIMA( p,d,q),其中时间序列 Y 满足 I(d) 过程,即 Y 的d 阶差分是平稳的。ARIMA( p, d,q)模型有以下四个部分组成(如图所示):7ARIMA(p,d,q)的求解方法特别当 d=0 时 ,ARIMA( p, 0, q)即为 ARMA(p,q)具体为:Yt1YtiLpYtp0ut1ut1Lq utq其中 u t 为 t 期的

26、白噪声。所以一般可通过使用 Y 的 d 阶差分后的数据, 将 ARIMA ( p, d, q)转化为 ARMA(p,q)求解(4) 模型建立画时间序列图走势图 Y=BPI一阶差分: Y*=D(BPI)8检验结论: Y是非平稳时间序列,但Y 的一阶差分 Y*是平稳时间序列。2. 求武汉大宗商品价格的相关图和偏相关图识别模型形式9时间序列模型估计:从上面的输出结果可以看出,C与 AR(2) 的系数没有显著性,因此需要从模型中将其剔除继续估计。得到重新的估计结果如下:选滞后期为 28得到如下输出结果:10样本外预测(预测方法选择静态预测)11求武汉商品住宅价格一阶差分:求武汉商品住宅价格序列的相关图和偏相关图,识别模型形式12时间序列模型估计:从上面的输出结果可以看出,C,AR(2)的系数没有显著性,因此需要从模型中将其剔除继续估计。得到重新的估计结果如下:13检验模型的误差项:样本外预测:(预测方法选择静态预测)14五、模型评价(一)优点(1)充分运用 EXCEL、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论