电压互感器的误差分为几种_第1页
电压互感器的误差分为几种_第2页
电压互感器的误差分为几种_第3页
电压互感器的误差分为几种_第4页
电压互感器的误差分为几种_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电压互感器的误差分为几种?比差和角差比差就是两个电压向量的模之差角差就是两个电压向量的相位角差。电压互感器产生误差的主要原因是什么? 电压互感器的基本结构和变压器很相似。它由一、二次绕组,铁芯和绝缘组成。当在一次绕组上施加电压U1时,一次绕组产生励磁电流I0,在铁芯中就产生磁通,根据电磁感应定律,在一、二次中分别产生感应电势E1和E2,绕组的感应电动势与匝数成正比,改变一、二次绕组的匝数,就可以产生不同的一次电压与二次电压比。当U=1在铁芯中产生磁通时,有激磁电流I0存在,由于一次绕组存在电阻和漏抗,I0在激磁导纳上产生了电压降,就形成了电压互感器的空载误差,当二次绕组接有负载时,产生的负荷电

2、流在二次绕组的内阻抗及一次绕组中感应的一个负载电流分量在一次绕组内阻抗上产生的电压降,形成了电压互感器的负载误差。可见,电压互感的误差主要与激磁导纳,一、二次绕组内阻抗和负荷导纳有关。三相四线制有功电度表带电流互感器带电流表带电压互感器接线原理图翻过接线端子盖,就可以看到接线图。其中1、4、7接电流互感器二次侧S1端,即电流进线端;3、6、9接电流互感器二次侧S2端,即电流出线端;2、5、8分别接三相电源;10、11是接零端。为了安全,应将电流互感器S2端连接后接地。 注意的是各电流互感器的电流测量取样必须与其电压取样保持同相,即1、2、3为一组;4、5、6 为一组;7、8、9 为一组电压互感

3、器vv接线图见图:VV接线一般用于35kV及以下系统,是采用两只全绝缘电压互感器一次首尾相连分别接到ABC三相(A1接A相、X1与A2接B相、X2接C相)监测电压。这样一次绕组没有接地,在系统发生单相接地故障的时候VV接线方式不易引起系统谐振,这是最大的优点。但是这种接线方式测量的是线电压,不能测量相电压,也不能监测系统的单相接地故障,这是他的缺点。一般V-V接线的电压互感器是由二个相同的单相电压互感器组成的,每个单相电压互感器的一次绕组(高压绕组)的二个引出端分别标有A和X,而这个单相电压互感器的二次绕组(低压绕组)的二个引出端分别标有a和x;标准的接法是第一个单相电压互感器的高压引出端A接

4、电源A相,第一个单相电压互感器的高压引出端X与第二个单相电压互感器的高压引出端A按在一起,接到电源B相,第二个单相电压互感器的高压引出端X接到电源C相,组成AX-AX 接线;但对这样的单相电压互感器,哪一个引出端当A,哪一个引出端当X都无所谓,只是需要将电压互感器的二次引出端和一次相对应就行,即高压接成了“XA-XA”,低压也要接成“xa-xa”;虽然“XAXA”、“AXXA”、“XAAX”这些接法只要二次跟着变换,原理就没有错,功能也能实现,但不算标准,容易出现问题,在工程实践中,还是要选用标准接法。电压互感器按用途分为测量用电压互感器和保护用电压互感器电压互感器二次侧接线端子的定义 1a

5、2a 1b 2b 怎么分组 有零没有 哪个是零?这是全绝缘型电压互感器,1a-1b一组;2a-2b一组,测量相间电压,也就是线电压。没有零高压电流、电压互感器为什么有两组接线端子?1S1,1S2;2S1,2S2这两组,难道它们的变比不同吗?电压互感器有100V和220V两组,但是它们的绝缘等级不同,我不知道这样做有什么用?求教高手!流互感器的2组端子,一组精度高,用于计量计费用。另一组用于继电保护。电压互感器的2组端子,一组是基本绕组,用来接电压表等等,另一组是辅助绕组,用来绝缘检测的,当单相接地时,辅助绕组会感应出100V的电压一组测量回路(如电流表,功率表,电压表等),一组保护回路(如继电

6、器,声光报警装置等)。电压互感器的种类及不同接线形式的特点?电压互感器原理上是一个带铁心的变压器,主要是由一、二次线圈、铁心、绝缘组成。采用三只单相三绕组电压互感器或者一只三相五柱式电压互感器的接线形式。电压互感器的接线方式有一台单项电压互感器,用两台电压互感器,三台电压互感器测量的三种接线方式。 电压互感器按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。电压互感器按照绝缘方式可分为干式、浇注式、油浸式和充气式,干式浸绝缘胶电压互感器结构简单、无着火和爆炸危险,浇注式电压互感器结构紧凑、维护方便,适用于3kV35kV户内式配电

7、装置;油浸式电压互感器绝缘性能较好,可用于10kV以上的户外式配电装置;充气式电压互感器用于SF6全封闭电器中。 用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式,用两台单相互感器接成不完全星形,也称VV接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视仪表和继电器用(1)Vv 接线方式:广泛用于中性点绝缘系统或经消弧线圈接地的35KV

8、及以下的高压三相系统,特别是10KV三相系统,接线来源于三角形接线,只是“口”没闭住,称为Vv接,此接线方式可以节省一台电压互感器,可满足三相有功、无功电能计量的要求,但不能用于测量相电压,不能接入监视系统绝缘状况的电压表(2)Y,yn接线方式:主要采用三铁芯柱三相电压互感器,多用于小电流接地的高压三相系统,二次侧中性接线引出接地,此接线为了防止高压侧单相接地故障,高压侧中性点不许接地,故不能测量对地电压(3)YN,yn接线方式:多用于大电流接地系统。(4)YN,yn,do接线方式:也称为开口三角接线,在正常运行状态下,开口三角的输出端上的电压均为零,如果系统发生一相接地时,其余两个输出端的出

9、口电压为每相剩余电压绕组二次电压的3倍,这样便于交流绝缘监视电压继电器的电压整定,但此接线方式在10KV及以下的系统中不采用。电压互感器的接线方式很多,常见的有以下几种: (1) 用一台单相电压互感器来测量某一相对地电压或相间电压的接线方式 (2) 用两台单相互感器接成不完全星形,也称VV接线,用来测量各相间电压,但不能测相对地电压,广泛应用在20KV以下中性点不接地或经消弧线圈接地的电网中。 (3) 用三台单相三绕组电压互感器构成YN,yn,d0或YN,y,d0的接线形式,广泛应用于3220KV系统中,其二次绕组用于测量相间电压和相对地电压,辅助二次绕组接成开口三角形,供接入交流电网绝缘监视

10、仪表和继电器用。用一台三相五柱式电压互感器代替上述三个单相三绕组电压互感器构成的接线,除铁芯外,其形式与图3基本相同,一般只用于315KV系统。 (4) 电容式电压互感器接线形式。 在中性点不接地或经消弧线圈接地的系统中,为了测量相对地电压,PT一次绕组必须接成星形接地的方式。 在360KV电网中,通常采用三只单相三绕组电压互感器或者一只三相五柱式电压互感器的接线形式。必须指出,不能用三相三柱式电压互感器做这种测量。当系统发生单相接地短路时,在互感器的三相中将有零序电流通过,产生大小相等、相位相同的零序磁通。在三相三柱式互感器中,零序磁通只能通过磁阻很大的气隙和铁外壳形成闭合磁路,零序电流很大

11、,使互感器绕组过热甚至损坏设备。而在三相五柱式电压互感器中,零序磁通可通过两侧的铁芯构成回路,磁阻较小,所以零序电流值不大,对互感器不造成损害。 常见异常(1)三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断; (2)中性点非有效接地系统,三相电压指示不平衡:一相降低(可为零),另两相升高(可达线电压)或指针摆动,可能是单相接地故障或基频谐振,如三相电压同时升高,并超过线电压(指针可摆到头),则可能是分频或高频谐振; (3)高压熔断器多次熔断,可能是内部绝缘严重损坏,如绕组层间或匝间短路故障; (4)中性点有效接地系统,母线倒

12、闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架绕、绕组层间或匝间短路故障; (5)中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能是高压绕组N(X)端接地接触不良。 2 电压互感器爆裂原因剖析及防范措施1 故障现象及相关数据 6kV系统共有八段,采用的是上海华通开关厂生产的电气组合柜,该厂设备自投产以来,主部件未发生大的缺陷,但其辅助测量PT发生了8台次损坏,现象表现为本体炸裂、内部绝缘物质喷出故障,致使6kV系统的相关保护不能投运,部分自动功能无法实现。这给厂用系统的安全稳定运行带来了

13、极大的隐患。 2 故障原因初探1)产品质量不好:如果由于产品本身绝缘、铁心叠片及绕制工艺不过关等,均可能致使电压互感器发热过量使绝缘长期处于高温下运行,从而导致绝缘加速老化,出现击穿。该类型的电压互感器一次侧绕组发生匝间短路,这样电流会迅速增大,铁磁也将迅速饱和从而导致谐振过电压,使绝缘击穿,高压熔断器被熔断。 2)电压互感器二次负荷偏重,一、二次电流较大,使二次侧负载电流的总和超过额定值,造成PT内部绕组发热增加,尤其是在电压高于PT额定电压(6kV)情况下,PT内部发热更加严重;再者,该系统属于中性点非有效接地系统,故一次侧电压在运行中容易发生偏斜,当某相出现高电压时,该相PT更加容易发生

14、热膨胀爆裂。 3) 由于铁磁谐振而造成电压互感器被击穿,因为:被击穿的电压互感器所处的母线带的负荷呈感性的比较多,特别是、段,带有大容量的深井泵,在负荷分配上其感抗大于容抗,由于某种原因,而使系统电压波动(如深井泵频繁启停等),使电路中电流和电压发生突变,可能导致电压互感器铁心迅速饱和、感抗减小,当感抗小于容抗时,将产生铁磁谐振,导致电压互感器激磁电流增大几十倍,而过电压幅值将达到近2.5Ue,甚至于达到3.5Ue以上,而且持续时间较长,电压互感器在这样大电压、大电流下运行,使本身的温度也迅速升高,导致损坏。 3 铁磁谐振的几个特点 1)对于铁磁谐振电路,在相同的电源电势作用下回路可能不只一种

15、稳定的工作状态。电路到底稳定在哪种工作状态要看外界冲击引起的过渡过程的情况。 2)PT的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。 3)串联谐振电路来说,产生铁磁谐振过电压的的必要条件是0=1L0C。因此铁磁谐振可在很大的范围内发生。 4)维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性且有节律的,即1/2(1,2,3)倍频率的谐振。 5)铁磁谐振对PT的损坏。电磁谐振(分频)一般应具

16、备如下三个条件。 铁磁式电压互感器(PT)的非线性效应是产生铁磁谐振的主要原因。 PT感抗为容抗的100倍以内,即参数匹配在谐振范围。 要有激发条件,如PT突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。 据试验分频谐振的电流为正常电流的240倍以上,工频谐振电流为正常电流的4060倍左右,高频谐振电流更小。在这些谐振中,分频谐振的破坏最大,如果PT的绝缘良好,工频和高频一般不会危及设备的安全,而6kV系统存在上述条件。 4 铁磁谐振的常用消除办法根据以上分析配电系统铁磁谐振的特性,就不难找到加以解决的办法。通常的解决办法有: 1)PT一次的中性点加装阻尼电阻。该方法在已

17、广泛采用,生产定型产品的厂家比较多,在实际运用中都取得了满意的效果。如西安电瓷厂生产的RXQ系列消谐器,该消谐器串接于PT一次绕组中性点与地之间,内部材料为大容量的非线性碳化硅电阻片及散热片等串联组装于瓷套内而成。其工作原理为:在低压下消谐器呈高电阻值(可达几百千欧)使谐振在起始阶段不易发展,单相接地时,消谐器上出现千余伏电压,它的非线性电阻下降,使其不影响接地保护的工作。 2)在PT开口三角侧并联固定(或可变)阻尼,用于一些要求不太高的变电所或配电所。 电压互感器常见异常的判断(1)三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断; (2)中性点非有效接地系统,三相电压指示不平衡:一相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论