下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.甲、乙、丙3人投篮,投进的概率分别是, , .现3人各投篮1次,求:()3人都投进的概率;()3人中恰有2人投进的概率.2.已知函数f(x)=sin(2x)+2sin2(x) (xR)()求函数f(x)的最小正周期 ; (2)求使函数f(x)取得最大值的x的集合.3.如图,=l , A, B,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求: () 直线AB分别与平面,所成角的大小; ()二面角A1ABB1的大小. 4已知正项数列an,其前n项和Sn满足10Sn=an2+5an+6且a1,a3,a15成等比数列,求数列an的通项an .5 如
2、图,三定点A(2,1),B(0,1),C(2,1); 三动点D,E,M满足=t, = t , =t , t0,1. () 求动直线DE斜率的变化范围; ()求动点M的轨迹方程.yxOMDABC11212BE6.已知函数f(x)=kx33x2+1(k0).()求函数f(x)的单调区间;()若函数f(x)的极小值大于0, 求k的取值范围.【参考答案】1解: ()记"甲投进"为事件A1 , "乙投进"为事件A2 , "丙投进"为事件A3,则 P(A1)= , P(A2)= , P(A3)= , P(A1A2A3)=P(A1) ·P
3、(A2) ·P(A3) = × ×= 3人都投进的概率为() 设“3人中恰有2人投进"为事件BP(B)=P(A2A3)+P(A1A3)+P(A1A2) =P()·P(A2)·P(A3)+P(A1)·P()·P(A3)+P(A1)·P(A2)·P() =(1)× × + ×(1)× + × ×(1) = 3人中恰有2人投进的概率为2.解:() f(x)=sin(2x)+1cos2(x) = 2sin2(x) cos2(x)+1 =2sin
4、2(x)+1 = 2sin(2x) +1 T= ()当f(x)取最大值时, sin(2x)=1,有 2x =2k+ 即x=k+ (kZ) 所求x的集合为xR|x= k+ , (kZ).ABA1B1l第2题解法一图EFABA1B1l第2题解法二图yxyEF3.解法一: ()如图, 连接A1B,AB1, , =l ,AA1l, BB1l, AA1, BB1. 则BAB1,ABA1分别是AB与和所成的角.RtBB1A中, BB1= , AB=2, sinBAB1 = = . BAB1=45°.RtAA1B中, AA1=1,AB=2, sinABA1= = , ABA1= 30°.
5、故AB与平面,所成的角分别是45°,30°.() BB1, 平面ABB1.在平面内过A1作A1EAB1交AB1于E,则A1E平面AB1B.过E作EFAB交AB于F,连接A1F,则由三垂线定理得A1FAB, A1FE就是所求二面角的平面角.在RtABB1中,BAB1=45°,AB1=B1B=. RtAA1B中,A1B= = . 由AA1·A1B=A1F·AB得 A1F= = ,在RtA1EF中,sinA1FE = = , 二面角A1ABB1的大小为arcsin.解法二: ()同解法一.() 如图,建立坐标系, 则A1(0,0,0),A(0,0,1
6、),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在tR,使得=t , 即(x,y,z1)=t(,1,1), 点F的坐标为(t, t,1t).要使,须·=0, 即(t, t,1t) ·(,1,1)=0, 2t+t(1t)=0,解得t= , 点F的坐标为(, ), =(, ). 设E为AB1的中点,则点E的坐标为(0, ). =(,).又·=(,)·(,1,1)= =0, , A1FE为所求二面角的平面角.又cosA1FE= = = = = ,二面角A1ABB1的大小为arccos.4.解: 10Sn=an2+5an+6, 10a
7、1=a12+5a1+6,解之得a1=2或a1=3. 又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0 an+an1>0 , anan1=5 (n2). 当a1=3时,a3=13,a15=73. a1, a3,a15不成等比数列a13;当a1=2时,a3=12, a15=72, 有a32=a1a15 , a1=2, an=5n3.5.解法一: 如图, ()设D(x0,y0),E(xE,yE),M(x,y).由=t, = t , 知(xD2,yD1)=t(2,2). 同理 . kDE = = = 12
8、t. t0,1 , kDE1,1.() =t (x+2t2,y+2t1)=t(2t+2t2,2t1+2t1)=t(2,4t2)=(2t,4t22t). , y= , 即x2=4y. t0,1, x=2(12t)2,2.即所求轨迹方程为: x2=4y, x2,2解法二: ()同上.yxOMDABC11212BE第5题解法图() 如图, =+ = + t = + t() = (1t) +t, = + = +t = +t() =(1t) +t, = += + t= +t()=(1t) + t = (1t2) + 2(1t)t+t2 .设M点的坐标为(x,y),由=(2,1), =(0,1), =(2,1)得 消去t得x2=4y, t0,1, x2,2.故所求轨迹方程为: x2=4y, x2,26.解: (I)当k=0时, f(x)=3x2+1 f(x)的单调增区间为(,0,单调减区间0,+).当k>0时 , f '(x)=3kx2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年版电子产品销售担保合同2篇
- 二零二五版海鲜食材直供与配送合同3篇
- 2025年度煤矿井下安全监控系统维护与升级服务合同4篇
- 二零二五版个人旅游资助担保服务协议范本3篇
- 二零二五版公司股权激励与员工持股计划修订协议3篇
- 2025年度新能源汽车销售居间服务合同书4篇
- 年度奥硝唑药物竞争策略分析报告
- 2025授课服务合同范本
- 2025公司租赁合同书范本
- 河南省二零二五年度企业员工劳动争议调解协议3篇
- 2023年Web前端技术试题
- GB/T 20840.8-2007互感器第8部分:电子式电流互感器
- GB/T 14864-2013实心聚乙烯绝缘柔软射频电缆
- 品牌策划与推广-项目5-品牌推广课件
- 信息学奥赛-计算机基础知识(完整版)资料
- 发烟硫酸(CAS:8014-95-7)理化性质及危险特性表
- 数字信号处理(课件)
- 公路自然灾害防治对策课件
- 火灾报警应急处置程序流程图
- 耳鸣中医临床路径
- 安徽身份证号码前6位
评论
0/150
提交评论