




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 badxxfA)(一一. .定积分的几何意义是什么?定积分的几何意义是什么?xyoA A 1、如果函数如果函数f(x)在)在a,b上连续且上连续且f(x)0时,那么:时,那么:定积分定积分 就表示以就表示以y=f(x)为曲边的曲边梯形面积)为曲边的曲边梯形面积。曲边梯形的面积曲边梯形的面积复习引入复习引入曲边梯形的面积的负值曲边梯形的面积的负值, 0)( xf baAdxxf)(, 0)( xf baAdxxf)(badxxf)()(xfy ab 2、定积分定积分 的数值在的数值在几何上都可以用曲边梯形面积的几何上都可以用曲边梯形面积的代数和来表示。代数和来表示。1S2S3S321SSSdx
2、xfba )(xyoA AbadxxfxfA)()(312、)(1xfy )(2xfy abbadxxf)(二、二、微积分基本定理内容是什么?设函数设函数f(x)在区间在区间a,b上连续,并且上连续,并且F(x)f(x),则,则,这个结论叫这个结论叫微积分基本定理微积分基本定理(fundamental theorem of calculus),又叫又叫牛顿莱布尼茨公式牛顿莱布尼茨公式(Newton-Leibniz Formula).).()()(d )( aFbFxFxxfbaba或记作baaFbFxxf)()(d)(解解:作出作出y2=x,y=x2的图象如图所示的图象如图所示:即两曲线的交点
3、为即两曲线的交点为(0,0),(1,1)1 12 20 0S =( x -x )dxS =( x -x )dx323102()|33xx.31 边边曲梯形OABC曲梯形OABDS= S-SoxyABCDO11200 xdxx dx01012:,xxyyyxyx解方程组得2xy yx2yx2yx2:,4yxyxx=8y=4解方程组得直线直线y=x-4与与x轴交点为轴交点为(4,0)88042(4)xdxxdx4881204422(4)SSSxdxxdxxdx488044(22)(4)xdxxdxxdx38282042 2140|(4 )|323xxx解解:作出作出y=x-4, 的图象的图象如图所
4、示如图所示:S1S22yx4 xy2yx80124 (84)2sxdx 38202 2|83x2 24016 2 833 4201(4)2syy dy234011(4)|26yyy2311404 444263 点评:点评:求两曲线围成的平面图形的面积的一般步骤求两曲线围成的平面图形的面积的一般步骤: :(1)(1)作出示意图作出示意图;(;(弄清相对位置关系弄清相对位置关系) )(2)(2)求交点坐标求交点坐标;(;(确定积分的上限确定积分的上限, ,下限下限) )(3)(3)确定积分变量及被积函数确定积分变量及被积函数; ;(4)(4)列式求解列式求解. .定积分在几何中的应用定积分在几何中
5、的应用1.求下列曲线所围成的图形的面积求下列曲线所围成的图形的面积:(1)y=x2,y=2x+3;(2)y=ex,y=e,x=0.332)32() 1 (312dxxxS1)()2(10dxeeSx解解:求两曲线的交点求两曲线的交点:).4 , 8(),2, 2( 422xyxyxy22 4 xy8281202222( 24)SSSxdxxxdx1S1S2S2yx3322822024 22 21166426|(4 )|18332333xxxx28022 2( 24)xdxxxdx2解解: 求两曲线的交点求两曲线的交点:(0,0),( 2,4),(3,9). 236xyxxy32012)6(xA
6、dxxx23320(6 )xAxx dx2xy xxy63 于是所求面积于是所求面积21AAA dxxxxA)6(2023 dxxxx)6(3230 .12253 2xy xxy63 1A2A思考题:思考题:在曲线在曲线y=xy=x2 2 (x0) (x0)上某点上某点A A处作切线处作切线, ,使之与曲线及使之与曲线及x x轴围成图形的面积为轴围成图形的面积为1/121/12。求过点求过点A A的切线方程的切线方程. .A Ax xy yo oy=xy=x2 2),设切点(200 xx02xk则,切线的斜率)(2y0020 xxxx2000)(2yxxxx即,0200221210 xxdxxSx12110 x解之得:; 12xy所以,切线方程为:三三.小结小结求两曲线围成的平面图形的面积的一般步骤求两曲线围成的平面图形的面积的一般步骤: :(1)(1)作出示意图作出示意图;(;(弄清相对位置关系弄清相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商品代理采购合同范本
- 河北省保定市2025届高三下学期一模试题 地理 含解析
- 创新创业基础教程 课件 模块三 创业团队组建
- 不跪的中国人课件
- 西藏昌都地区昌都县2025年数学三下期末质量跟踪监视模拟试题含解析
- 云南农业职业技术学院《中国现代文学Ⅱ》2023-2024学年第一学期期末试卷
- 济源职业技术学院《农业机械与信息技术》2023-2024学年第二学期期末试卷
- 长沙理工大学城南学院《复合材料力学与结构设计基础》2023-2024学年第二学期期末试卷
- 辽宁省大连市高新区2025年小升初数学综合练习卷含解析
- 沈阳航空航天大学《钢琴(3)》2023-2024学年第二学期期末试卷
- 高级考评员职业技能鉴定考试题及答案
- 建筑工程住宅水泥制品排气道系统应用技术规程
- 2024年中国红木家具市场调查研究报告
- 湖北省襄阳市襄州区2025届初三(生物试题理)4月第一次综合练习试卷含解析
- 初中语文必考必背古诗词、古文61篇大全
- 公积金个人贷款合同模板
- 智能纺织技术的家居家纺应用
- 投标承诺函格式(具有履行合同所必需的设备和专业技术能力)
- DL∕T 515-2018 电站弯管 标准
- DZ∕T 0270-2014 地下水监测井建设规范
- 监护人考试试题
评论
0/150
提交评论