下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5.3 平行线的性质 平行线的性质【知识与技能】1.掌握平行线的性质定理.2.综合运用平行线的判定及性质进行简单的证明或计算.【过程与方法】1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.2.培养学生逆向思维的能力.【情感态度】培养学生逆向思维的能力.【教学重点】掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.【教学难点】综合运用平行线的判定及性质进行简单的证明或计算.一、情境导入,初步认识问题 利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,同位角、内错角、同旁内角各有
2、什么关系呢?二、思考探究,获取新知可将上述问题细化:1.如图,直线ab,直线a,b被直线c所截.(1)请填表:(2)如果a与b不平行,1与2还有以上关系吗?(3)通过(1)(2)的探究,你能得到什么结论?2.如图,直线ab,则3与2相等吗?为什么?3与4互补吗?思考1.你能根据以上探究,归纳出平行线的三个性质定理吗?2.平行线的性质定理与相应的判定定理是怎样的关系?【归纳结论】1.平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同
3、旁内角互补.简单说成:两直线平行,同旁内角互补.2.平行线的性质定理与相应的判定定理的已知部分和结论部分正好相反,它们是互逆关系.三、运用新知,深化理解1.如图,已知ABCD,ADBC,A与C有怎样的大小关系,为什么?2.已知ABCD,直线EF分别交AB,CD于M,N,MP平分EMA,NQ平分MNC,那么MPNQ,为什么?3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则1+2=_. 第3题图 第4题图4.如图,已知ABDE,ABC=80,CDE=140,则BCD=_.5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE
4、,则ABC+BCD=_度.【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5与生活实际联系,让学生拓展思维.【答案】1.解:A=C,理由如下:ABCD,A与D为同旁内角,即A+D=180;ADBC,D与C为同旁内角,即D+C=180.所以A+D=D+C,即A=C.2.解:ABCD,EMA与MNC为同位角,即EMA=MNC.MP平分EMA,NQ平分MNC,则EMP=EMA,MNQ=MNC.所以EMP=MNQ,则MPNQ.3.90 解析:如图,经点F作AB的平行线,则1与3,2与4为内错角.根据平行线的性质得1=3,2=4,所
5、以1+2=3+4=EFH=90.4.40 解析:如图,过点C作GHDE.所以DCH+CDE=180(两直线平行,同旁内角互补).因为CDE=140(已知),所以DCH=180-CDE=40.又因为ABDE(已知),所以ABGH(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).所以ABC=BCH(两直线平行,内错角相等).因为ABC=80(已知),所以BCH=80(等量代换).所以BCD=BCH-DCH=40.5.270 解析:如图,过B作BGCD,则CBG+BCD=180,ABG=90,于是可得ABC+BCD=90+180=270.四、师生互动,课堂小结平行线的性质:1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.在有关图形的计算和推理中,常见一类“折线”“拐角”型问题,解决这类问题的方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西京学院《建筑装饰材料及施工工艺》2022-2023学年第一学期期末试卷
- 西京学院《国际商务谈判与礼仪》2022-2023学年第一学期期末试卷
- 西京学院《电工电子学》2021-2022学年期末试卷
- 杯弓蛇影英文课件
- 2024-2025学年高中物理举一反三系列专题2.3 气体的等压变化和等容变化(含答案)
- 电工教程 课件
- 西华师范大学《普通地质学》2021-2022学年第一学期期末试卷
- 西华师范大学《计算机组成原理》2023-2024学年期末试卷
- 西华师范大学《大气污染防治技术》2021-2022学年第一学期期末试卷
- 西昌学院《英汉翻译理论与技巧》2022-2023学年第一学期期末试卷
- 风险事件分类清单
- 2023年03月2023年浙江万里学院招考聘用企业编制工作人员30人笔试题库含答案解析
- 学校建设工程项目自查报告
- 混凝土结构理论智慧树知到答案章节测试2023年华南理工大学
- 超声引导下腰椎部位穿刺
- 口语交际我们与环境教案(集合5篇)
- 土地整理项目结算审计方案及提供资料清单
- 普通高校本科招生专业选考科目要求指引(通用版)
- 某文化博物馆建设项目可行性研究报告
- 二年级语文质量分析ppt课件精选ppt
- JJF 1272-2011阻容法露点湿度计校准规范
评论
0/150
提交评论