小学三年级校本教材系列《数学思维训练》_第1页
小学三年级校本教材系列《数学思维训练》_第2页
小学三年级校本教材系列《数学思维训练》_第3页
小学三年级校本教材系列《数学思维训练》_第4页
小学三年级校本教材系列《数学思维训练》_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、校本教材系列-数学思维训练(三年级)        第1讲  等差数列1、下面是按规律排列的一串数,问其中的第1995项是多少?解答:2、5、8、11、14、。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=23×(19951)=59842、在从1开始的自然数中,第100个不能被3除尽的数是多少?解答:我们发现:1、2、3、4、5、6、7、中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50

2、×3=150,那么第100个不能被3除尽的数就是1501=149.3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(14254)÷2=98。4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?解答:因为34×2828=35×28=9801000,所以只有以下几个数: 

3、;          34×2929=35×29           34×3030=35×30           34×3131=35×31         

4、;  34×3232=35×32           34×3333=35×33           以上数的和为35×(2930313233)=54255、盒子里装着分别写有1、2、3、134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒

5、内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析:假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目123134135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116&#

6、247;17=614, 所以黄卡片的数是17-14=3。6、下面的各算式是按规律排列的: 11,23,35,47,19,211,313,415,117, 那么其中第多少个算式的结果是1992?解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为19921=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符,所以这个算式是3+1989=1992,是(19891)÷2=995

7、个算式。7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?解答:从左向右算它们的差分别为:999、992、985、12、5。 从右向左算它们的差分别为:1332、1325、1318、9、2, 所以最小差为2。8、有19个算式:那么第19个等式左、右两边的结果是多少?解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题:前18个式子用去了多少个数? 各式用数分别为5、7、9、第18个用了52×17=39个, 57939=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、第19

8、个应该是31×18=21个, 所以第19个式子结果是397398399417=8547。9、已知两列数: 2、5、8、11、2(2001)×3; 5、9、13、17、5(2001)×4。它们都是200项,问这两列数中相同的项数共有多少对?解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、, 由于第一个数列最大为2(2001)×3=599; 第二数列最大为5(2001)×4=80

9、1。新数列最大不能超过599,又因为512×49=593,512×50=605, 所以共有50对。10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形。求边长为2厘米的小正三角形的个数,所作平行线段的总长度。解答: 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,最后一行99个, 所以共有(1+99)×50÷2=2500个; 所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米

10、,第二条4厘米,第三条6厘米,最后一条98厘米,所以共长(2+98)×49÷2×3=7350厘米。11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说

11、第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?解答:第一方案:35、40、45、50、55、35 第二方案:45、50、55、60、65、40 二次方案调整如下: 第一方案:40、45、50、55、35+35(第一天放到最后惶熘腥?/P>第二方案:40、45、50、

12、55、(最后一天放到第一天)这样第二方案一定是40、45、50、55、60、65、70,共385页。13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男又值氖髟缴僭胶茫敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少?解答:最大与最小数的

13、和为170150=20,所以最大数最大为201=19,当最大为19时,有191817161514131211109871=170, 当最大为18时,有18171615141312111098762=158, 所以最大数为19时,有第2个数为7。第2讲  计算问题  乘法与除法1.算式333×625×125×25×5×16×8×4×2的结果中末尾有多少个零?解答:找出算式中含有5的是:625×125×25×5=(5×5×5

14、15;5)×(5×5×5)×(5×5)×5,共10个5; 找出算式中含有2的是:16×8×4×2=(2×2×2×2)×(2×2×2)×(2×2)×2,共10个2。每一组5×2=10,产生1个0,所以共有10个0。答:结果中末尾有10个零。2.如果n=2×3×5×7×11×13×17×125。那么n的各位数字的和是多少?解答:2×

15、3×5×7×11×13×17×125 =(7×11×13) ×(3×17) ×(2×5×125) =1001×51×1250 =1001×(50×1250+1×1250)         =1001×(12500÷2+1250)     &

16、#160;   =1001×(62500+1250)         =(1000+1)×63750         =63750000+63750         =63813750         6+3+8+1+3+7+5+0=33答

17、:n的各位数字的和是33.3.(1)计算:5÷(7÷11)÷(11÷15)÷(15÷21),   (2)计算:(11×10×9×3×2×1)÷(22×24×25×27).解答:(1)5÷(7÷11)÷(11÷15)÷(15÷21)=5×11÷7×15÷11×21÷15 =5×11

18、÷11×15÷15×21÷7 =5×21÷7 =5×3×7÷7 =5×3           =15         (2)(11×10×9×3×2×1)÷(22×24×25×27

19、) =(11×10×9×3×2×1)÷22÷24÷25÷27) =(11×2÷22) ×(10×5÷25) ×(9×6 ÷27) ×(8×3÷24) ×7×4 =1×2×2×1×7×4 =4×28=1124.在算式(-7×)÷16=2的各个方框内填入相同的数字

20、后可使等式成立,求这个数字.解答:-7×=11×-7×=×(11-7)=×4, 因为×4÷16=2,所以×4=32,=8答:=8.5. 计算:9×17+91÷17-5×17+45÷17.解答:9×17+91÷17-5×17+45÷17 =9×17-5×17+91÷17+45÷17 =(9-5)×17+(91+45)÷17=4×17+136

21、÷17 =68+8 =766. 计算:567×142+426×811-8520×50.解答:567×142+426×811-8520×50 =567×142+3×142×811-8520×100÷2 =142×(567+3×811)-852000÷2           =142×3000

22、-426000           =426000-426000           =07. 计算:28×5+2×4×35+21×20+14×40+8×62.解答:28×5+2×4×35+21×20+14×40+8×62 =2×2×7&#

23、215;5+2×4×5×7+3×7×4×5+2×7×5×2×4+8×62=2×2×7×5×(1+2+3+4)+496 =10×14×10+496 =1400+496 =1896 8. 计算:55×66+66×77+77×88+88×99.解答:55×66+66×77+77×88+88×99 

24、;=(11×5)×(11×6)+(11×6)×(11×7)+(11×7)×(11×8)+(11×8)×(11×9)=11×11×(5×6+6×7+7×8+8×9) =11×(10+1)×(30+42+56+72) =(110+11)×200 =121×200 =242009. 计算:(123456+234561+345612+4

25、56123+561234+612345) ÷7.解答:(123456+234561+345612+456123+561234+612345) ÷7 =(1×100000+2×10000+3×1000+4×100+5×10+6)+(2×100000+3×10000+4×1000+5×100+6×10+1)+(3×100000+4×10000+5×1000+6×100+1×10+2)+(4×100000+5&#

26、215;10000+6×1000+1×100+2×10+3)+(5×100000+6×10000+1×1000+2×100+3×10+4)+(6×100000+1×10000+2×1000+3×100+4×10+5) ÷7=1+2+3+4+5+6×100000+(2+3+4+5+6+1)×10000+(3+4+5+6+1+2)×1000+(4+5+6+1+2+3)×100+(5+6+1+2+3+4)×10+

27、(6+1+2+3+4+5)×1 ÷7 =(21×100000+21×10000+21×1000+21×100+21×10+21×1)÷7 =21×100000÷7+21×10000÷7+21×1000÷7+21×100÷7+21×10÷7+21×1÷7 =300000+30000+3000+300+30+3 =33333310. (87+56+73

28、+75+83+63+57+53+67+78+65+77+84+62) ÷14.解答:(87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14=(8+5+7+7+8+6+5+5+6+7+6+7+8+6)×10+(7+6+3+5+3+3+7+3+7+8+5+7+4+2)÷14 =(14×7-7)×10+(14×7-28) ÷14 =(13×7)×10+(10×7)÷14 =(130+10)×7÷

29、;14=140×7÷14 =10×7 =7011.在算是12345679×=888888888,12345679×=555555555的方框和圆圈内分别填入恰当的数后可使两个等式都成立,求所填的两个数之和.解答:×9个位是8,×9个位是5,所以的个位是2,的个位是5。12000000×82>888888888,13000000×62<888888888,所以=7212000000×55>555555555, 13000000×35<55555

30、5555,所以=4572+45=117答:所填的两个数之和是117.12.计算:(1)42×45,(2)31×39,(3)45×45,(4)132×138.解答:(1)42×45=42×(50-5)=2100-210=1890   (2)31×39=31×(40-1)=1240-31=1209   (3)45×45=45×(50-5)=2250-225=2025   (4)132×138=(100

31、+30+2)×138=13800+4140+276=1821613.计算:(1)13579×11,(2)124×111,(3)1111×1111.解答:(1)13579×11=13579×(10+1)=135790+13579=149369   (2)124×111=124×(100+10+1)=12400+1240+124=13764(3)1111×1111=1111×(1000+100+10+1)=1111000+111100+11110+1111=123432

32、114.(1)给出首位是1的两位数的简便算法,据此计算10至19中任意两数的乘积,并排列成一个乘法表. (2)有一类小于200的自然数,每一个数的各位数字之和是奇数,而且都是两个两位数的乘积,例如144=12×12.那么在此类自然数中,第三大的数是多少?解答:(1)1×1 =(10+) ×(1) =10×1+×1 =100+×10+×10+× =100+(+) ×10+×首位是1的两位数的乘积=100+两个数个位数字之和的10倍+两个数个位数字之

33、积首位是1的两位数乘法表10   10011   110   12112   120   132   14413   130   143   156   16914   140   154   168   182   19615   150   165

34、0;  180   195   210   22516   160   176   192   208   224   240   25617   170   187   204   221   238   255   272  

35、 28918   180   198   216   234   252   270   288   306   32419   190   209   228   247   266   285   304   323   342

36、0;  361      10    11    12    13    14    15    16    17    18    19(2)最大的是195=13

37、15;15,其次是182=13×14,再次是180=12×15在此类自然数中,第三大的数是180.15.有16张纸,每张纸的正面用红色笔任意写1,2,3,4中的某个数字,在反面用蓝笔也写1,2,3,4中的某个数字,要求红色数相同的任何两张纸上,所写的蓝色数一定不同.现在把每张纸上的红、蓝两个数相乘,求这16个乘积的和.解答:红1可对应?,2,3,4;红2可对应蓝1,2,3,4;红3可对应蓝1,2,3,4;红4可对应蓝1,2,3,4,共有16种不同的情况。因为红色数相同的任何两张纸上,所写的蓝色数一定不同,所以这16张纸正好就是这16种情况。(1×1+1×

38、2+1×3+1×4)+(2×1+2×2+2×3+2×4)+(3×1+3×2+3×3+3×4)+(4×1+4×2+4×3+4×4) =(1+2+3+4)×(1+2+3+4) =10×10 =100答:这16个乘积的和是100. 第3讲 智巧趣题1、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字。解答:312132  

39、;        2312132、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段?解答:对折一次: 2*2-1=3段对折二次:4*2-3=5段对折三次:8*2-7=9段.3、有10张,卡片分别标有从2开始的10个连续偶数。如果将它们分成5组,每组两张,计算同组中两个偶数和分别得到34,22,16,30,8。那么每组中的两张卡片上标的数各是多少?解答:10个连续偶数是:2,4,6,8,10,12,14,16,18,208=2+6    16=4+

40、12      22=14+8      30=20+10        34=16+18     4、售货员把29个乒乓球分装在5个盒子里,使得只要顾客所买的乒乓个数小于30,他总可以恰好把其中的一盒或几盒卖出,而不必拆盒。问这5个盒子里分别装着多少个乒乓球?解答:1+2+4+8+14=295、小明的左衣袋和右衣袋中分别装有6枚和8枚硬币,并且两衣袋中硬币

41、的总钱数相等。当任意从左边衣袋取出两个硬币与右边衣袋的任意两个硬币交换时,左边衣袋的钱总数要么比原来的钱数多2分,要么比原来的钱数少2分,那么两个衣袋中共有多少分钱?解答:2*6=5+7*1     共:2*6*2=24分=2角4分.6、如图10-1,这是用24根火柴摆成的两个正方形,请你只移动其中的4根火柴,使它变成两个完全相同的正方形。解答:7、请将16个棋子分放在边长30厘米、20厘米、10厘米的3个盒子里,使大盒子里的棋子数是中盒子里棋子数的2倍,中盒子里的棋子数是小盒子里棋子数的2倍。问应当如何放置?解答:把小盒子放进中盒子里,大盒子

42、另外放.小盒里放4个,中盒里放4个,大盒里放8个.8、今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币与真币和重量不同。现需弄清楚伪币究竟比真币轻,还是比真币重,但只有一架没有砝码的天平。那么怎样利用这架天平称两次,来达到目的?解答:分成50、50、1三堆:第一次称两个50,如果平了,第二次从这100个任意拿1个(当然是真的)与第三堆的1个称,自然会出结果;第一次称两个50不平是正常的,第二次我们把其中的一堆(或重的或轻的都行)分成25、25、称第二次:1、把轻的分成25、25,如果平了,说明那堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假,假的是轻了;2、把重的分成25

43、、25,道理同上。所以两次可以发现轻重,但是找不出哪个是假的。9、有大、中、小3个瓶子,最多分别可发装入水1000克、700克和300克。现在大瓶中装满水,希望通过水在3个瓶子间的流动动使得中瓶和小瓶上标出装100克水的刻度线,问最少要倒几次水?解答:10、把123,124,125三个数分别写在图10-2所示的A,B,C三个小圆圈中,然后按下面的规则修改这三个数。第一步,把B中的数改成A中的数与B中的数之和;第二步,把C中的数改成B中(已改过)的数与C中的数之和;第三步,把A中的数改成C中(已改过)的数与A中的数之和;再回到第一步,循环做下去。如果在某一步做完之后,A,B,C中的数都变成了奇数

44、,则停止运算。为了尽可能多运算几步,那么124应填在哪个圆圈中?           11、若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了。小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下。小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子。问共有多少个盒子?解答:原来有个空的,说明现在也有个空的;现在空的说明原来这盒有1个,当然现在也必须有个盒子有1个;现在盒中有1个,说明原来是2个,当然现在也必须有个盒

45、子有2个;考虑50多,所以有0+1+2+3+4+5+6+7+8+9+10=55共11个盒子。12、如图10-3,圆周上顺序排列着1,2,3,12这12个数。我们规定:把圆周上某相邻4个数的顺序颠倒过来,称为一次变换,例如1,2,3,4可变为4,3,2,1,而11,12,1,2可变为2,1,12,11。问能否经过有限变换,将12个数的顺序变为如图10-4所示的9,1,2,3,8,10,11,12?解答: 从两个图可以看出,10、11、12没有变化,我们不妨这样排列:9、8、7、6、5、4、3、2、1变为8、7、6、5、4、3、2、1、9;这样只要9次就行。13、在一块黑板上将12345

46、6789重复50次得到450位数123456789123456789。先删去这个数中从左至右数所有位于奇数位上的数字,再删去所得的数中所有位于奇数位上的数字,依此类推。那么,最后删去的是哪个数字?解答: 容易发现,每次留下的应该是2n位上的数字;28=256,29=512>450,所以最后一个数字应该是第256位上的数;256/9=28.4,所以,最后删去的是4。14、把1,2,3,4,1986,1987这1987个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4划掉5,6,这样每隔一个数划掉两个数,转圈划下去,。问:最后剩下哪个数?15、如图10-5,在一个圆周上放

47、了1枚黑色的和1990枚白色的围棋子。一个同学进行这样的操作:从黑子开始,按顺时针方向,每隔1枚,取走1枚。当他取到黑子时,圆周上还剩下多少枚白子?解答:将黑子右边的第一个编号1,顺时针排下去,到黑子就是第1991号;每隔1枚,取走1枚,即第一圈取所有偶数编号的,最后一颗取走的为1990号,即黑子左边的一个,到黑子时正好跳过黑子;这样第一圈共取走(1991-1)/2=995个,留下了996个;对剩下的棋子重新按上述方法(即黑子右边为1号)编号,第2圈就变成了全部取走奇数号,因为此时黑子为996号,又正好留下;并且可以知道,只要留下的是偶数枚,黑子总能跳过;992/2=498,第三圈留下498枚

48、;498/2=249,第四圈留下249枚;249为奇数,因此第5圈结束将正好取走黑子,那么,当黑子被取走时,还留下(249-1)/2=124枚。 第4讲 计数问题 枚举法1.  如图9-10,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法?解答:三数之和是9,不考虑顺序。1+2+6=9,1+3+5=9,2+3+4=9答:有3种不同的取法。2.  从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?解答:两数之和大于10,不考虑顺序。8+7,8+6

49、,8+5,8+4,8+37+6,7+5,7+46+5答:共有9种不同的取法。3.  现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?解答:2角3分=23分5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。4.  妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃

50、法?解答:需要考虑吃的顺序不同。7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3答:有8种不同的吃法。5.有3个工厂共订300份吉林日报,每个工厂最少订99份,最多101份。问一共有多少种不同的订法?解答:3个工厂各不相同,3数之和是300份,要考虑顺序。99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99答:一共有7种不同的订法。6.  在所有的四位数中,各个数位上的数字之和等于34的数有多少个?解答:4个数字之和是34,只有9+9+9+7=34,9

51、+9+8+8=34,不同的数字放在不同位是组成的四位数不同,考虑顺序。9997,9979,9799,7999;9988,9898,9889,8998,8989,8899答:有10个。7.  有25本书,分成6份。如果每份至少一本,且每份的本数都不相同,有多少种分法?解答:1+2+3+4+5+10,1+2+3+4+6+9,1+2+3+4+7+8,1+2+3+5+6+8,1+2+4+5+6+7答:有5种分法。8.  小明用70元钱买了甲、乙、丙、丁4种书,共10册。已知甲、乙、丙、丁这4种书每本价格分别为3元、5元、7元、11元,而且每种书至少买了一本。那么

52、,共有多少种不同的购买方法?解答:4种书每种1本,共3+5+7+11=26(元),70-26=44,44元买6本书11×3+5×1+3×2,11×2+7×2+5×1+3×1,11×2+7×1+5×3,11×1+7×4+5×1答:共有4种不同的购买方法。9.  甲、乙、丙、丁4名同学排成一行。从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?解答:不同的排法共有9种。1

53、0.  abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系ab,bc,cd的四位数abcd来。解答:若a最小:1324,1423;若c最小:2314,2413,3412答:有5个:1324,1423,2314,2413,3412。11.  一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。问一共有多少个这样的数?解答:设两位数是AB,三位数是CDE,则AB*5CDE。CDE能被5整除,个位为0或5。若E=0,由于E+CD,所以CD;又因为

54、CDE/5的商为两位数,所以百位小于5。当C=1,2,3,4时,D=1,2,3,4,CDE110,220,330,440。若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE165,275,385,495。答:一共有8个这样的数。12.  3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。现在25个小球,首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取球一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是多少?解答:3人自己取走的球数是25-

55、(1+2+3)19-2=17(个),17=3*4+2*1+1*3,所以,穿2号球衣的人取走手中球数1的3倍,这是甲。答:甲穿的运动衣的号码是2。  13.  甲、乙两人打乒乓球,谁先胜两局谁赢;如果没有人连胜两局,则谁先胜三局谁赢,打到决出输赢为止。那么一共有多少种可能的情况?解答:设甲胜为A,甲负为B,若最终甲赢,有7种可能的情况。如图。同理,乙赢也有7种可能的情况。7+714答:一共有14种可能的情况。 14.  用7张长2分米、宽1分米的长方形不干胶,贴在一张长7分米、宽2分米的木板,将其盖住,共有多少种不同的拼贴方式

56、?在这里,如果两种方案可以通过旋转而互相得到,那么就认为是同一种。解答:12种。如图所示。15.  用对角线把正八边形剖分成三角形,要求这些三角形的顶点是正八边形的顶点,那么共有多少种不同的方法?在这里,如果两种剖分方法可以通过恰当的旋转、反射,或者旋转加反射而互相得到,那么就认为是同一种。解答:12种。如图所示。第5讲 几何问题  几何图形的认知1、图8-1中的3个图形都是由A,B,C,D(线段或圆)中的两个组合而成,记为A*B,C*D,A*D。请你画出表示A*C的图形。解答:比较1和3图知A代表竖线,比较2的3图知D代表横线,所以B代表大圆,C代表小

57、圆。A*C就是小圆加竖线。2、图8-2是由9个小人排列成的方阵,但有一个人没有到位。请你根据图形的规律,在标有问号的位置画出你认为合适的小人。 解答:3、如图8-3,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作。按上述规则完成5次以操作以后,剪去所得小正方形的左下角。问:当展开这张正方形纸片后,共有多少个小洞孔?解答:每操作1次都使正方形1变4。第1次操作后剪了4层展开合为一个洞(40),第2次操作1*4=4(41)个洞,第3次4*4=16(42),第4次16*4=64(43),第5次64*4=256(44)。不信的同学可以看我挖的效果图:) 操?次挖出黑洞1个,2次挖

58、出橙洞4个,3次黄洞16个,4次绿洞64个,5次蓝洞256个4、如图8-4,用4个大小相同的正方体拼成图中的形状。如果用涂料涂正方体中的一个侧面需用工料费3元,那么涂完图中的所有面,共需要工料费多少元?解答:解:设小正方体一个侧面为1,则拼成后的形状为18,18*3=54.答:共需要工料费54元.5、用红、黄、蓝、白、黑、绿这6种颜色分别涂在正方体的各面上,每一个面只涂一种颜色。如图8-5所示,现有涂色方式完全一样的4块小正方体拼成了一个长方体,试回答:每个小正方体中,红色面的对面涂的是什么色?黄色面的对面涂的是什么色?黑色面的对面涂的是什么色? 解答:共用了红、黄、蓝、白、黑、绿6

59、种颜色。根据图,可以看到:红色与黑、黄、白、蓝相邻,所以,红色对面是绿色。黄色与红、黑、白、绿相邻,所以,黄色对面是蓝色。黑色与红、黄、蓝、绿相邻,所以,黑色对面是白色。6、已知在每个正方体的6个面上分别写着1,2,3,4,5,6这6个数,并且任意两个相对的面上所写的两个数的和都等于7。如图8-6,现在把5个这样的正方体一个挨着一个连接起来,在紧挨着的两个面上的两个数之和都等于8,那么图中标有问号的那个面上所写的数是多少?解答:从图前面的1开始分析,对面为6;挨着的面为2,对面为5;挨着的面为3,对面为4。转弯处1在上面,则6在底下,1的左右两面只能是2、5。如果右面为2,挨着的面则为6,对面

60、为1,紧挨着的面为7,不符合要求。所以1的右面为5,挨着的面为3,对面为4,挨着的面为4,?处为3。7、在图8-7的5个图形中,有一个不是正方体展开图,那么这个图形的编号是几?解答:8、请你在图8-10上画出3种与图8-9不一样的设计图,使它折起来后都成为图8-8所示的长方体盒子,其中的粗线与棱的交点均为棱的中点。解答:9、如图8-11所示,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘)。那么这个多面体的面数、顶点数和棱数的总和是多少?解答:这个多面体中间一段是六棱柱,上面和下面一样,都是由3个正方形和3个三角形相间斜立着,再由1个三角形连在一起10、如图8-12,这是一个用若干

61、块体积相同的小正方体粘成的模型。把这个模型的表面(包括底面)都涂上红色,那么,把这个模型拆开以后,有3面涂上红色的小正方体比有2面涂上红色的小正方体多多少块?解答:3面红:1层有5×4=20(个),2层有4个,3层有4个,共20+4+4=28(个)   2面红:2层有3×4=12(个),3层有4个,共12+4=16(个)    3面红比2面红的多28-16=12(个)11、若干棱长为1的正方体拼成了一个11×11×11的大正方体,那么从一点望去,最多能看到多少个单位正方体?解答:  1

62、2、有10个表面涂满红漆的正方体,其棱长分别为2,4,6,18,20。若把这些正方体全部锯成棱长为1的小正方体,则在这些小正方体中,共有多少个至少是一面有漆的?解答:13、已知一个正方体木块能分割成若干个棱长为1厘米的小正方体木块,并且在这个大的正方体木块的5个面上涂上红色,把它分割成若干个棱长1厘米的小正方体木块后,有两面涂上红色的共有108块。那么只有一面涂上红色的有多少块? 解答:14、一条小虫沿长6分米,宽4分米,高5分米的长方体的棱爬行。如果它只能进不能退,并且同一条棱不能爬两次,那么它最多能爬多少分米?解答:15、如图8-13,一个正四面体摆在桌面上,正对你的面ABC是红

63、色,底面BCD是白色,右侧面ACD是蓝色,左侧面ABD是黄色。先让四面体绕底面面对你的棱向你翻转,再让它绕底面右侧棱翻转,第三次绕底面面对你的棱向你翻转,第四次绕底面左侧的棱翻转,此后依次重复上述操作过程。问:按规则完成第一百次操作后,面对你的面是什么颜色?解答: 第6讲 数字谜问题  乘除法填空格1、把1至9这9个不同的数字分别填在图7-1的各个方格内,可使加法和乘法两个算式都成立。现有3个数字的位置已确定,请你填上其他数字。 解答:由两位数乘一位数得两位数可以推出应为17*4=68,那么,后面的加数个位为5,余下2、9正好满足68+25=93。2、图7-2是一个乘法算式。当乘积最大时,方框内所填的4个数字之和是多少?解答:一个两位数乘5得两位数,那么个位只能是1;要使乘积最大,个位当然应该是9;即算式为19*5=95;那么,所填的四个数字之和为:1+9+9+5=24。3、请补全图-3所示的残缺算式,问其中的被乘数是多少?解答:由个位往前分析,容易得到被乘数个位为8,积十位为7,被乘数百位为5,万位为4,积万位为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论