![年产260吨钢的转炉车间设计论文_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-3/11/8c0ee388-b933-4e33-b39d-bba5d5f6d183/8c0ee388-b933-4e33-b39d-bba5d5f6d1831.gif)
![年产260吨钢的转炉车间设计论文_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-3/11/8c0ee388-b933-4e33-b39d-bba5d5f6d183/8c0ee388-b933-4e33-b39d-bba5d5f6d1832.gif)
![年产260吨钢的转炉车间设计论文_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-3/11/8c0ee388-b933-4e33-b39d-bba5d5f6d183/8c0ee388-b933-4e33-b39d-bba5d5f6d1833.gif)
![年产260吨钢的转炉车间设计论文_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-3/11/8c0ee388-b933-4e33-b39d-bba5d5f6d183/8c0ee388-b933-4e33-b39d-bba5d5f6d1834.gif)
![年产260吨钢的转炉车间设计论文_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-3/11/8c0ee388-b933-4e33-b39d-bba5d5f6d183/8c0ee388-b933-4e33-b39d-bba5d5f6d1835.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、太原科技大学毕业设计(论文)任务书(由指导教师填写发给学生)学院(直属系):材料科学与工程学院 时间:2014年 3月 12日学 生 姓 名吴峰 指 导 教 师李海斌设计(论文)题目三吹二120T顶吹转炉及炼钢车间设计主要研究内容1.物料平衡及热平衡计算2.氧气顶吹转炉炉型设计及计算3.氧枪设计及计算4.转炉炼钢车间设计及计算5.连铸设备的选型及计算6.炉外精炼设备的选型与工艺布置7.炼钢车间烟气净化系统的设计研究方法利用已学的冶金工艺和钢铁厂设计知识进行理论计算与设计; 利用机械设计基础知识,通过查阅相关资料与现有结构相结合对结构部件设计计算。鼓励采用新技术、新方法、新思路和创新设计。主要技
2、术指标(或研究目标)毕业设计说明书一份(包括英文资料的中文翻译)设计图纸三张 1)氧气顶吹转炉炉型图 12)年产260万吨良坯三吹二型氧气顶吹转炉炼钢车间工艺平面布置图13)年产260万吨良坯三吹二型氧气顶吹转炉炼钢车间剖视图 1教研室意见教研室主任(专业负责人)签字: 2014年03月12日说明:一式两份,一份装订入学生毕业设计(论文)内,一份交学院(直属系)。目 录摘 要IVAbstractV第1章 绪论- 1 -1.1转炉炼钢的历史及发展- 1 -1.1.1转炉炼钢概述- 1 -1.1.2 世界转炉炼钢的发展历程- 1 -1.1.3 我国转炉炼钢的发展- 3 -1.2转炉炼钢的分类- 3
3、 -1.2.1 氧气顶吹转炉炼钢- 4 -1.2.2 氧气底吹转炉炼钢- 4 -1.2.3顶底复吹转炉炼钢- 5 -第2章 炼钢过程的物料平衡和热平衡计算- 7 -2.1物料平衡计算- 7 -2.1.1 计算原始数据- 7 -2.1.2 物料平衡基本项目- 9 -2.1.3 计算步骤- 9 -2.2热平衡计算- 17 -2.2.1 计算所需原始数据- 17 -2.2.2 计算步骤- 17 -第3章 年产260万吨氧气顶吹转炉设计- 21 -3.1 氧气顶吹转炉炉型及各部分尺寸- 21 -3.1.1 转炉炉型及其选择- 21 -3.1.2转炉炉型各部分尺寸的确定- 21 -3.2转炉炉衬- 25
4、 -3.2.1炉衬材质选择- 25 -3.2.2炉衬组成及厚度确定- 26 -3.3砖型选择- 26 -第4章 氧气顶吹转炉氧枪设计- 28 -4.1.1 喷头参数选择原则- 29 -4.1.2 120t转炉氧枪喷头尺寸计算- 31 -4.2氧枪枪身设计- 33 -4.2.1枪身各层尺寸的确定- 33 -4.2.2 氧枪长度的确定- 36 -4.3 氧枪装置和副枪装置- 36 -4.3.1 氧枪装置- 36 -4.3.2 副枪装置- 37 -第5章 炉外精炼设备及工艺布置- 38 -5.1炉外精炼方法的选择- 38 -5.1.1炉外精炼的功能- 38 -5.1.2各种产品对精炼功能的一般要求-
5、 38 -5.1.3 炉外精炼方法的确定- 38 -5.2 LF精炼炉- 39 -5.2.1 LF精炼炉的特点- 39 -5.2.2 LF炉设备及其配置- 39 -5.2.3LF炉在车间内的布置- 40 -5.3 RH精炼炉- 41 -5.3.1 RH设备的特点- 41 -5.3.2 RH真空脱气室设计原理- 41 -第6章 连续铸钢设备- 42 -6.1连铸机机型分类- 42 -6.2 连铸机的主要工艺参数- 42 -6.2.1钢包允许的最大浇铸时间- 42 -6.2.2 铸坯断面- 43 -6.2.3 拉坯速度- 43 -6.2.4 连铸机的流数- 44 -6.2.5 铸坯的液相深度和冶金
6、长度- 45 -6.2.6 弧形半径- 46 -6.3 连铸机生产能力的确定- 46 -6.3.1连铸机与炼钢炉的合理匹配和台数的确定- 46 -6.3.2连铸浇注周期计算- 47 -6.3.3连铸机的作业率- 47 -6.3.4连铸坯收得率- 48 -6.3.5连铸机生产能力的计算- 49 -6.4 连铸机主要设备- 50 -6.4.1 钢包与中间包的钢流控制系统- 50 -6.4.2 钢包回转台- 51 -6.4.3 中间包及其载运设备- 51 -第7章 氧气顶吹转炉炼钢车间设计- 53 -7.1 转炉车间组成与生产能力计算- 53 -7.2 转炉车间主厂房工艺布置- 53 -7.2.1
7、装料跨布置- 53 -7.2.2 转炉跨布置- 55 -7.2.3 连铸各跨布置- 60 -第8章 炼钢车间烟气净化与回收- 64 -8.1 烟气与烟尘- 64 -8.1.1烟气特征- 64 -8.1.2 烟尘性质- 65 -8.2 烟气净化方案选择- 65 -8.3 烟气净化系统主要设备- 65 -8.3.1 烟罩- 66 -8.3.2 烟气冷却系统- 66 -8.3.3 除尘器- 66 -参考文献- 67 -致 谢- 68 -附录- 69 -年产260万吨良坯(锭)转炉炼钢车间设计摘 要本设计简要介绍了转炉炼钢、我国和世界炼钢技术的发展历程。然后进行了物料平衡和热平衡的计算,再依给定的年产
8、计算出其公称容量为120t,设计出其炉型和氧枪;再根据给的钢种来确定其炉外精炼的方法和布置,还有连铸设备的选择;然后根据选择和计算出的数值来设计出炼钢车间,最后处理好烟气的净化和回收,从而完成本设计。关键词:氧气顶吹转炉,物料平衡和热平衡,炉型,氧枪,连铸,炼钢车间AbstractThe design introduced BOF steelmaking and the progress of home and abroad.Calculated material and heat balance,calculated nominal capacity 120 tons by annual p
9、roduction,designed furnace and oxygen lance.According to steel species determined the method and layout of secondary refining,the select of continuous casting equipment,under the calculation and select.In the and,handled flue gas cleaning and recovery.Key words:oxygen lance,heat and material balance
10、,furnace,oxygen lance,continuous casting,making workshop第1章 绪论1.1转炉炼钢的历史及发展1.1.1转炉炼钢概述 转炉炼钢(converter steelmaking)是以铁水、废钢、铁合金为主要原料,不借助外加能源,靠铁液本身的物理热和铁液组分间化学反应产生热量而在转炉中完成炼钢过程。碱性氧气顶吹和顶底复吹转炉由于其生产速度快、产量大,单炉产量高、成本低、投资少,为目前使用最普遍的炼钢设备。转炉主要用于生产碳钢、合金钢及铜和镍的冶炼(1)。转炉炼钢的原材料分为金属料、非金属料和气体。金属料包括铁水、废钢、铁合金,非金属料包括造渣料、
11、熔剂、冷却剂,气体包括氧气、氮气、氩气、二氧化碳等。非金属料是在转炉炼钢过程中为了去除磷、硫等杂质,控制好过程温度而加入的材料。主要有造渣料(石灰、白云石),熔剂(萤石、氧化铁皮),冷却剂(铁矿石、石灰石、废钢),增碳剂和燃料(焦炭、石墨籽、煤块、重油)。1.1.2 世界转炉炼钢的发展历程早在1856年德国人贝斯麦就发明了底吹酸性转炉炼钢法,这种方法是近代炼钢法的开端,它为人类生产了大量廉价钢,促进了欧洲的工业革命。但由于此法不能去除硫和磷,因而其发展受到了限制。1879年出现了托马斯底吹碱性转炉炼钢法,它使用带有碱性炉衬的转炉来处理高磷生铁。虽然转炉法可以大量生产钢,但它对生铁成分有着较严格
12、的要求,而且一般不能多用废钢。1952年在奥地利出现纯氧顶吹转炉,它解决了钢中氮和其他有害杂质的含量问题,使质量接近平炉钢,同时减少了随废气(当用普通空气吹炼时,空气含79%无用的氮)损失的热量,可以吹炼温度较低的平炉生铁,因而节省了高炉的焦炭耗量,且能使用更多的废钢。由于转炉炼钢速度快(炼一炉钢约10min,而平炉则需7h),负能炼钢,节约能源,故转炉炼钢成为当代炼钢的主流。 其实130年以前贝斯麦发明底吹空气炼钢法时,就提出了用氧气炼钢的设想,但受当时条件的限制没能实现。直到20世纪50年代初奥地利的Voest Alpine公司才将氧气炼钢用于工业生产,从而诞生了氧气顶吹转炉,亦称LD转炉
13、。顶吹转炉问世后,其发展速度非常快,到1968年出现氧气底吹法时,全世界顶吹法产钢能力已达2.6亿吨,占绝对垄断地位。1970年后,由于发明了用碳氢化合物保护的双层套管式底吹氧枪而出现了底吹法,各种类型的底吹法转炉(如OBM,Q-BOP,LSW等)在实际生产中显示出许多优于顶吹转炉之处,使一直居于首位的顶吹法受到挑战和冲击。 顶吹法的特点决定了它具有渣中含铁高,钢水含氧高,废气铁尘损失大和冶炼超低碳钢困难等缺点,而底吹法则在很大程度上能克服这些缺点。但由于底吹法用碳氢化合物冷却喷嘴,钢水含氢量偏高,需在停吹后喷吹惰性气体进行清洗。基于以上两种方法在冶金学上显现出的明显差别,故在20世纪70年代
14、以后,国外许多国家着手研究结合两种方法优点的顶底复吹冶炼法。继奥地利人Dr.Eduard等于1973年研究转炉顶底复吹炼钢之后,世界各国普遍开展了转炉复吹的研究工作,出现了各种类型的复吹转炉,到20世纪80年代初开始正式用于生产。由于它 比顶吹和底吹法都更优越,加上转炉复吹现场改造比较容易,使之几年时间就在全世界范围得到普遍应用,有的国家(如日本)已基本上淘汰了单纯的顶吹转炉。氧气转炉炼钢从顶吹发展到顶底复吹经历了30 多年,现已成为世界上主要的炼钢方法,目前转炉钢的比例已达70%以上。传统的转炉炼钢过程是将高炉来的铁水经混铁炉混匀后兑入转炉,并按一定 比例装入废钢,然后降下水冷氧枪以一定的供
15、氧、枪位和造渣制度吹氧冶炼。当达到吹炼终点时,提枪倒炉,测温和取样化验成分,如钢水温度和成分达到目标值范围就出钢。否则,降下氧枪进行再吹。在出钢过程中,向钢包中加入脱氧剂和铁合金进行脱氧、合金化。然后,钢水送模铸场或连铸车间铸锭。随着用户对钢材性能和质量的要求越来越高,钢材的应用范围越来越广,同时钢铁生产企业也对提高产品产量和质量,扩大品种,节约能源和降低成本越来越重视。在这种情况下,转炉生产工艺流程发生了很大变化。铁水预处理、复吹转炉、炉外精炼、连铸技术的发展,打破了传统的转炉炼钢模式。已由单纯用转炉冶炼发展为铁水预处理复吹转炉吹炼炉外精炼连铸这一新的工艺流程。这一流程以设备大型化、现代化和
16、连续化为特点。氧气转炉已由原来的主导地位变为新流程的一个环节,主要承担钢水脱碳和升温的任务了。1.1.3 我国转炉炼钢的发展 我国炼钢生产工艺技术的发展,大致可划分为3个发展阶段:自力更生阶段、改革开放阶段和集成创新阶段。 自力更生阶段2:新中国成立后,在自力更生、艰苦奋斗的方针指导下,新中国的炼钢生产得到了迅速恢复和较快发展。但由于受到西方工业发达国家的技术封锁,我国炼钢生产技术与国际先进水平有很大差距,炼钢生产仍以落后的平炉一模铸工艺为主,中小型钢铁企业占相当大的比例。对20世纪5060年代国际上开发投产并迅速推广的氧气转炉、连铸、钢水炉外精炼和铁水预处理等新工艺、新技术国内迟迟未能大量采
17、用。这一阶段建设了新中国钢铁工业的脊梁,培养了优良的作风和大批优秀的技术、管理人才,为中国钢铁工业的振兴奠定了基础。 改革开放阶段:这一历史时期我国采取对外开放的基本国策,通过学习、引进、消化和吸收国外先进技术使我国炼钢生产技术逐步实现现代化。集成创新阶段:20世纪90年代中期国内开始学习并引进美国溅渣护炉技术,通过不断的技术再创新和集成创新形成了具有中国特色的溅渣护炉技术,在全国广泛推广,获得巨大成绩。这标志着我国炼钢生产技术的发展开始从单纯学习、引进国外先进技术为主,逐渐转移到以国内自主创新和集成创新为主的发展道路。随着国内炼钢生产技术的发展,我国钢产量快速增长,从1966年的1亿t增到2
18、005年的349亿t,约占世界钢产量的三分之一,其生产技术的发展令全世界目。1.2转炉炼钢的分类转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部位分为底吹、顶吹和顶底复吹;按吹炼采用的气体,分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧得到较大发展。空气吹炼的转炉钢,因含氮量高,质量不如平炉钢,且原料有局限性,又不能多配废钢,未能像平炉那样在世界范围内广泛采用。1952年氧气顶吹转炉问世,逐渐取代空气吹炼的转炉和平炉,现在已经成为世界上主要炼钢方法。在氧气顶吹
19、转炉炼钢法的基础上,为吹炼高磷生铁,又出现了喷吹石灰粉的氧气顶吹转炉炼钢法。随氧气底吹的风嘴技术的发展成功,1967年德国和法国分别建成氧气底吹转炉。1971年美国引进此项技术后又发展了底吹氧气喷石灰粉转炉,用于吹炼含磷生铁。1975年法国和卢森堡又开发成功顶底复合吹炼的转炉炼钢法。1.2.1 氧气顶吹转炉炼钢用纯氧从转炉顶部吹炼铁水成钢的转炉炼钢方法称为LD法或称BOF法。此炼钢方法继承了过去的空气吹炼转炉的优点,又克服了其缺点。与电炉炼钢相比,该方法具有以下优点:1)生产率高;2)对铁水成分的适应性强;3)废钢使用量高;4)可生产低硫、低磷、低氮、及地杂质钢等;5)可生产几乎所有主要钢品种
20、。正因为有这些长处,氧气顶吹转炉炼钢法在1952年后迅速地发展为世界上的主要炼钢方法。它主要用于冶炼非合金钢和低合金钢;但通过精炼手段,也可用于冶炼不锈钢等合金钢。1.2.2 氧气底吹转炉炼钢 通过转炉底部的氧气喷嘴把氧气吹入炉内熔池,使铁水冶炼成钢的转炉炼钢方法成为OBM法。OBM法的出现使处于垄断地位的氧气顶吹转炉炼钢法受到了挑战和冲击。这是因为氧气底吹转炉炼钢法显示出许多优于顶吹法之处,可归纳为:1)熔池搅拌力强,相当或大于顶吹法的10倍,因此,熔池的成分、温度均匀、操作平稳,且可防止喷溅和金属损失。2)脱碳速度快,熔池碳氧反应更处于平衡状态,因此更适合于冶炼低碳钢,即使转炉终点C为0.
21、01%0.02%时(质量分数),也不会出现渣、钢过氧化现象,且有较高的残锰收得率,因此比氧气顶吹转炉炼钢法有更高的钢水和合金收得率。由于以上两点明显的优点,从70年代开始,西德、美国、法国、比利时、瑞典以及日本相继投产了一些氧气底吹转炉。然而,氧气底吹转炉也存在一些自身难以克服的缺点,如:1)由于熔池上方形成不了类似顶吹法时的熔状区,因此,脱磷困难。2)由于仅极少量CO在炉内燃烧成CO2,因此产生热量比顶吹法低,废钢比低于顶吹法4%左右。3)由于使用碳氢化合物冷却喷嘴,因此钢水H比顶吹法高。1.2.3顶底复吹转炉炼钢 因为顶吹法和底吹法各有长处和短处,而自身又无法克服其短处,因此,促使人们去思
22、考寻求集两者优点而克服两者缺点的新途径。另外,70年代,连铸技术在全世界迅速发展,对炼钢在钢质和成分上提出了更高要求,因此这种集顶吹和底吹优点的新技术的研究加快了步伐。1978年,卢森堡阿尔蓖德贝尔瓦厂首先开发出顶吹氧、底吹惰性气体的复合吹炼方法,即LBE法,且很快在西欧、北美迅速推广。与此同时,日本各大钢厂也相继开发成功顶底复吹技术,并成功用于工业生产。由于顶底复吹技术显示出诸多冶金效果及经济效益,同时,由于将顶吹转炉改成复吹转炉无须大幅度改造,因而顶底复吹技术经问世5年后,在世界范围内已有70座容量150t的大型转炉改造成功并投产。可以说,到80年代末,复吹炼钢法已取代顶吹法而成为转炉炼钢
23、的主流。顶底复合吹炼技术主要分三大类:(1)顶吹氧、底吹惰性气体法:顶吹氧气,底吹气体为N2、AR及CO2弱氧化性气体,底吹气体流量大致在0.3NM3/t·min以下,该技术为加强搅拌型复吹方法,其目的主要是加强搅拌效果来获得较好的冶金效果;(2)顶底复合吹氧法:该技术是指顶底同时吹氧、在底吹氧的同时也可吹入部分熔剂,属于强化冶炼型的复吹方法。底吹氧量约为顶吹的5%40%(0.21.5M3/t·min)。供气元件为双套管,中心吹O2,外层吹CO2、N2、Ar及天燃气作保护;(3)顶底吹氧、喷加燃料法:该技术指顶吹氧、底吹或侧吹氧,同时底喷或加入燃料,属于增加废钢型的复吹方法
24、。顶底复吹的主要冶金特征表现在以下几方面:(1)碳氧反应更趋平衡;(2)吹炼终点残锰明显提高;(3)脱磷脱硫反应更趋平衡。由于复吹具有上述明显的冶金特征,因而它给钢厂带来了诸多优点,可归纳为:(1)渣中含铁量降低2.5%5.0%;(2)金属收得率提高0.5%1.5%;(3)残锰提高约0.02%0.06%;(4)石灰消耗减少310Kg t;(5)磷含量降低约0.002%;(6)降低O2耗约8%;(7)减少耐材消耗,提高炉龄。第2章 炼钢过程的物料平衡和热平衡计算炼钢过程的物料平衡和热平衡计算是建立在物质与能量守恒的基础上的3。其主要目的是比较整个过程中物料、能量的收入项和支出项,为改进操作工艺制
25、度,确定合理的设计参数和提高炼钢技术经济指标提供定量依据。由于炼钢是一个复杂的高温物理化学变化过程,加上测试手段有限,目前还难以做到精确取值和计算。尽管如此,它对指导炼钢生产和设计仍有重要的意义。2.1物料平衡计算2.1.1 计算原始数据基本原始数据有:冶炼钢种及其成分,铁水和废钢的成分,终点钢水成分(见表2.1);造渣用溶剂及炉衬等原材料的成分(见表2.2):脱氧和合金化用铁合金的成分及其回收率(表2.3);其他工艺参数(表2.4)。表2-1 钢种、铁水、废钢和终点钢水的成分设定值类别成分含量%CSiMnPS钢种Q235A设定值50.0450.005铁水设定值3.20.
26、700.550.200.033废钢设定值00.0250.035终点钢水设定值0.10痕迹0.1650.0250.003表2-2 原材料成分类别成分%CaOSiO2MgOAl2O3Fe2O3CaF2P2O5SCO2H2OC灰分挥发分石灰88.252.552.601.300.620.200.034.350.10萤石0.305.500.601.601.5088.000.900.101.50生石灰石36.400.8025.601.0036.20炉衬1.203.0078.801.401.6014.00焦炭0.5881.5012.40表2.3 铁合金成分(分子)及其回收率(分母)类别
27、成分含量/回收率/%CSiMnAlPSFe硅铁73.00/750.50/802.50/00.05/1000.03/10023.92/100锰铁6.60/900.50/7567.8/800.23/1000.13/10024.74/100注:上表中的C中10%于氧生成CO2。表2.4 其他工艺参数设定值名称参数名称参数终渣碱度萤石加入量生白云石加入量炉衬蚀损量终渣(FeO)含量(按向钢中传氧量(Fe2O3)=1.35(FeO)折算)烟尘量喷溅铁损(CaO) (SiO2)=3.5为铁水量的0.5%为铁水量的2.5%为铁水量的0.3%15%,而(Fe2O3)/(FeO)=1/3,即(Fe2O3)=5%
28、,(FeO)=8.25% 为铁水量的1.5%(其中(FeO)为75%,(Fe2O3)为20%)为铁水量的1%渣中铁损(铁珠)氧气纯度炉气中自由氧含量气化去硫量金属中C的氧化产物废钢量为渣量的6%99%,余者为N20.5%(体积比)占总去硫量的1/390%的C氧化成CO,10%的C氧化成CO2由热平衡计算确定,本计算结果为铁水量的4.06%,即废钢比为3.90%2.1.2 物料平衡基本项目收入项有:铁水、废钢、溶剂(石灰、萤石、轻烧白云石)、氧气、炉衬蚀损、铁合金。支出项有:钢水、炉渣、烟尘、渣中铁珠、炉气、喷溅。2.1.3 计算步骤以100Kg铁水为基础进行计算。第一步:计算脱氧和合金化前的总
29、渣量及其成分。总渣量包括铁水中元素氧化、炉衬蚀损和计入溶剂的成渣量。其各项成渣量分别列于表2.5、2.6和2.7。总渣量及其成分列于表2.8中。第二步:计算氧气消耗量。氧气实际耗量系消耗项目与供入项目之差。见表2.9。表2.5 铁水中元素的氧化产物及其渣量元素反应产物元素氧化量()耗氧量()产物量()备注CCCO3.10×90%=2.7903.7206.510CCO23.10×10%=0.3100.8301.140SiSiSiO20.7000.8001.500入渣MnMnMnO0.3850.1120.497入渣PPP2O50.1750.2260.400入渣SSSO20.03
30、×1/3=0.0100.0100.020S+(CaO)(CaS)+(O)0.03×2/3=0.020-0.0100.036(CaS)入渣FeFeFeO0.970×56/72=0.7540.2150.970入渣见表2-8FeFe2O30.539×112/160=0.3770.1620.539入渣见表2-8合计5.5216.065成渣量3.942入渣组分之和 由CaO还原出的氧量;消耗的CaO量=0.020×56/32=0.035kg。表2.6 炉衬蚀损的成渣量炉衬蚀损量/成渣组分/kg气态产物/kg耗氧量/CaOSiO2MgOAl2O3Fe2O3
31、CCOCCO2CCO,CO20.3(据表2-5)0.0040.0090.2360.0040.0050.3×14%×90%×28/12=0.0880.3×14%×10%×44/12=0.0150.3×14%×(90%×28/12+10%×44/12)=0.062合计0.2580.1030.062表2.7 加入溶剂的成渣量类别加入量/成渣组分/kg气态产物/kgCaOMgOSiO2Al2O3Fe2O3P2O5CaSCaF2H2OCO2O2萤石0.5(据表2-4)0.0020.0030.0280.00
32、80.0080.0050.0010.4400.005白云石2.5(据表2-4)0.9100.6400.0200.0250.905石灰5.765.0800.1500.1470.0750.0360.0110.0040.0060.2500.001合 计5.9920.7930.1950.1080.0440.0160.0050.4400.0111.1550.001成渣量7.593 石灰加入量计算如下:由表4.64.8可知,渣中已含(CaO)=-0.035+0.004+0.002+0.910=0.881;渣中已含(SiO2)=1.500+0.009+0.028+0.020=1.557。因设定的终渣碱度R=
33、3.5;故石灰的加入量为:R(SiO2)- (CaO)/ (CaO石灰)-R×(SiO2石灰)=4.5685/(88.25%-3.5×2.55%)=5.76kg (石灰中CaO含量)-(石灰中SCaS消耗的CaO量)。 由CaO还原出来的氧量,计算方法同表2-6的注。表2.8 总渣量及其成分炉渣成分CaOSiO2MgOAl2O3MnOFeOFe2O3CaF2P2O5CaS合计元素氧化成渣量/kg1.5000.4970.9730.5410.4000.0363.979石灰成渣量/kg5.0800.1470.1500.0750.0360.0110.0045.471炉衬蚀损成渣量/
34、kg0.0040.0090.2360.0040.0050.258生白云石成渣量/kg0.9100.0200.6400.0251.595萤石成渣量/kg0.0020.0280.0030.0080.0080.4400.0050.0010.495总成渣量/kg5.9961.7041.0290.1120.4970.9730.5900.4400.4160.04111.798质量分数/%50.8214.448.720.903.733.530.35100.00 总渣量计算如下:因为表2-9中除(FeO)和(Fe2O3)以外总渣量为:5.996+1.704+1.029+0.112+0.
35、497+0.440+0.416+0.041=10.235Kg,而终渣(FeO)=15%(表2.4),故总渣量为10.235÷86.75%=11.798Kg。(FeO)=11.798×8.25%=0.973Kg。(Fe2O3)=11.798×5%-0.036-0.005-0.008=0.541Kg。表2.9 实际耗氧量耗氧项/Kg供氧项/Kg实际氧气消耗量/Kg铁水中元素氧化消耗量 6.065炉衬中碳氧化消耗量 0.062石灰中S与CaO反应还原出的氧化量(表2.7) 0.001烟尘中铁氧化消耗量 0.340炉气自由氧含量 0.0476.514-0.001+0.05
36、8=6.571合计 6.514合计 0.001 炉气N2(存在于氧气中,见表2.4)的质量,详见表2.10。 第三步:计算炉气量及其成分。 炉气中含有CO、CO2、N2、SO2和H2O。其中CO、CO2、SO2和H2O可由表2.52.7查得,O2和N2则由炉气总体积来确定。现计算如下。 炉气总体积V:式中 VgCO、CO2、SO2和H2O各组分总体积,m³。本设计中,其值为6.598 ×22.4/28+2.310×22.4/44+0.020×22.4/64+0.011×22.4/18=6.538m³; GS不计自由氧的氧气消耗量,Kg
37、。其值为:6.065+0.062+0.34=6.467Kg; VX石灰中的S与CaO反应还原出的氧气量(其质量为:0.001Kg); 99由氧气纯度99%转换得来; 0.5%炉气中自由氧含量。表2.10 炉气量及其成分炉气成分炉气量/Kg体积/m³体积分数/%CO6.5985.27879.76CO22.3101.17617.77SO20.0200.0701.06H2O0.0110.0140.21O20.0470.0330.50N20.0580.0460.70合 计9.0446.617100.00 炉气中O2的体积为6.617×0.5%=0.033m³;质量为0.0
38、33×32/22.4=0.047kg。 炉气中N2的体积系炉气总体积与其他成分的体积之差;质量为0.046×28/22.4=0.058 kg。第四步:计算脱氧和合金化前的钢水量。钢水量Qg=铁水量-铁水中元素的氧化量-烟尘、喷溅、和渣中的铁损 据此可以编制出未加废钢、脱氧与合金化前的物料平衡表2.11。2.11 未加废钢时的物料平衡表收入支出项目质量/ kg%项目质量/Kg%铁水1000086.48钢水91.7679.23石灰5.764.98炉渣11.8010.19萤石0.500.43炉气9.047.81生白云石2.502.16喷溅1.000.86炉衬0.300.26烟尘1
39、.501.30氧气6.575.69渣中铁珠0.710.61合计115.63100.00合计115.81100.00注:计算误差为(115.63-115.81)/115.63100%=-0.15%。表2.12 废钢中元素的氧化量及其成渣量元素反应产物元素氧化量/kg耗氧量/kg产物量/kg进入钢中的量/kgCCCO4.06×0.08%×90%=0.00290.00390.0068(入气)CCO24.06×0.08%×10%=0.00030.00030.0011(入气)SiSiSiO24.06×0.25%=0.01020.00580.0510MnM
40、nMnO4.06×0.435%=0.01770.00510.1047PPP2O54.06×0=000SSSO24.06×0.009%×1/3=0.00040.00020.0004(入气)S+(CaO)(CaS)+O4.06×0.009%×2/3=0.0009-0.00040.0020(CaS)合 计0.03440.01504.06-0.0344=4.0256成渣量/kg0.1660第五步:计算加入废钢的物料平衡。如同“第一步”计算铁水中元素氧化量一样,利用表2.1的数据先确定废钢中元素的氧化量及其耗氧量和成渣量(表2.12),再将其与
41、表2.11归类合并,遂得加入废钢后的物料平衡表2.13和表2.14.表2.13 加入废钢的物料平衡表(以100Kg铁水为基础)收 入支 出项 目质量/Kg%项 目质量/Kg%铁 水100.0083.54钢 水91.76+4.0256=95.7979.81废 钢4.063.39炉 渣11.80+0.166=11.979.97石 灰5.764.81炉 气9.04+0.008=9.057.54萤 石0.500.42喷 溅1.000.83轻烧生白云石2.502.09烟 尘1.501.25炉 衬0.300.25渣中铁珠0.710.60氧 气6.57+0.015=6.595.50合 计119.71100.
42、00合 计120.02100.00注:计算误差为(119.71-120.02)/ 119,71100%=-0.26%。表2.14 加入废钢的物料平衡表(以100Kg(铁水+废钢)为基础)收 入支 出项 目质量/kg%项 目质量/kg%铁 水96.1083.54钢 水92.0579.81废 钢3.903.39炉 渣11.509.97石 灰5.544.81炉 气8.707.54萤 石0.480.42喷 溅0.960.83轻烧生白云石2.402.09烟 尘1.441.25炉 衬0.290.25渣中铁珠0.680.60氧 气6.335.50合 计115.04100.00合 计115.33100.00第
43、六步:计算脱氧和合金化后的物料平衡。 先根据钢种成分设定值(表2.1)和铁合金成分及其烧损率(表2.3)算出锰铁和硅铁的加入量,再计算其元素的烧损量。将所得结果与表2.14归类合并,即得冶炼一炉钢的总物料平衡表。锰铁加入量为: =硅铁加入量为: =铁合金中元素的烧损量和产物量列于表2.15表2.15 铁合金中元素烧损量及其产物量类别元素烧损量/kg脱氧量/Kg成渣量/ Kg炉气量/ Kg入钢量/ Kg锰铁C0.65×6.60%×10%=0.0040.0050.015(CO2)0.65×6.60%×90%=0.039Mn0.65×67.80%
44、215;20%=0.0880.0260.1140.65×67.80%×80%=0.353Si0.65×0.50%×25%=0.0010.0010.0020.65×0.50%×75%=0.002P0.65×0.23%=0.001S0.65×0.13%=0.001Fe0.65×24.74%=0.161合计0.0930.0320.1160.0150.557硅铁Al0.42×2.50%×100%=0.0110.0100.006Mn0.42×0.50%×20%=0.00040
45、.00010.00050.42×0.50%×80%=0.002Si0.42×73.0%×25%=0.0770.0880.1650.42×73.0%×75%=0.230P0.42×0.05%=0.0002S0.42×0.03%=0.0001Fe0.42×23.92%=0.100合计0.0880.0980.1720.332总 计0.1810.1300.2880.0150.889脱氧和合金化后的钢水成分如下: 可见,含碳量尚未达到设定值。为此需要在钢包内加焦炭粉增碳。其加入量W1为: 焦粉生成的产物如下:炭烧损
46、量/Kg耗氧量/Kg气体量/Kg成渣量/Kg碳入钢量/Kg0.05×81.50%×25%=0.0100.0270.037+0.05×(0.58+5.52)%=0.0400.05×12.40%=0.0060.05×81.50×0.75%=0.031由上述计算可得冶炼过程(即脱氧和合金化后)的总物料平衡表2.16。表2.16 总物料平衡表收 入支 出项 目质量/kg%项 目质量/kg%铁 水96.1082.62钢 水92.9779.74废 钢3.903.35炉 渣11.7910.11石 灰5.544.76炉 气8.767.51萤 石0.4
47、80.41喷 溅0.960.82轻烧生白云石2.402.06烟 尘1.441.23炉 衬0.290.25渣中铁珠0.680.60氧 气6.49(6.33+0.130+0.027)5.58锰 铁0.650.56硅 铁0.420.36焦粉0.050.05合计116.32100.00合 计116.60100.00注:计算误差为 (114.06-115.25)/ 114.06×100%=-1.04%。 可近似认为(0.102+0.016)的氧量系出钢水时二次氧化所带入的氧量。2.2热平衡计算2.2.1 计算所需原始数据计算所需基本原始数据有:各种入炉料及产物的温度(表2.17);物料平均热容
48、(表2.18);反应热效应(表2.19);溶入铁水中的元素对铁熔点的影响(表2.20)。其他数据参照物料平衡选取。表2.17 入炉料及产物的温度设定值表2.名 称入 炉 物 料产 物铁水废钢其他原料炉渣炉气烟尘温度/13202525与钢水相同14501450 纯铁熔点为1536表2.18 物料平均热容物料名称生铁钢炉渣矿石烟尘炉气固态平均热容/kJ·(kg·K)-10.7450.6991.0470.996熔化潜热/ kJ·kg-1218272209209209液态或气态平均热容/ kJ·(kg·K)-10.8370.8371.2481.137表
49、2.19 炼钢温度下的反应热效应组元化学反应H/kJ·kmol-1H/kJ·kg-1CC+1/2O2=CO 氧化反应-139420-11639CC+O2CO2 氧化反应-418072-34834SiSi+O2SiO2 氧化反应-817682-29202MnMn+1/2O2=(MnO2) 氧化反应-361740-6594P2P+5/2O2=(P2O5) 氧化反应-1176563-18980FeFe+1/2O2=( FeO) 氧化反应-238229-4250Fe2Fe+3/2O2=( Fe2O3) 氧化反应-722432-6460SiO2(SiO2)+2(CaO)=(2CaO·SiO2) 成渣反应-97133-1620P2O5(P2O5)+4(CaO)=(4CaO·P2O5) 成渣反应-693054-4880CaCO3CaCO3=(CaO)+CO2 分解反应1690501690MgCO3MgCO3=(MgO)+CO2 分解反应11802014052.2.2 计算步骤以100Kg铁水为基础。第一步:计算热收入Qs。热收入项包括:铁水物理热;元素氧化热及成渣热;烟尘氧化热;炉衬中碳的氧化热。(1)铁水物理热Qw:先根据纯铁熔点、铁水成分以及溶入元素对铁熔点的降低值(见表2.17、2.2和2.19)计算铁
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《做幸福的使者》课件
- 《甲状腺癌的护理》课件
- 《ERP管理理论》课件
- 2025年重庆货运从业资格证模拟试题
- 我院医患关系的调查与分析
- 2025年铝及铝合金材项目合作计划书
- 元宵节新媒体运营模板
- 绿色复古风艺术画册相册主题
- DeepSeek使用教程蓝皮书
- 工程造价论文参考文献正确格式范文
- 公务用车分时租赁实施方案
- 《论语》原文-翻译-完整版
- 退休延期留用岗位协议书
- 中医适宜技术-中药热奄包
- 压疮的预防和护理
- 《手卫生知识培训》培训课件
- 算力时代全光网架构研究报告(2024年)
- 2024年江苏省淮安市中考英语试题卷(含答案解析)
- 2025届高考作文素材:《黑神话 悟空》高考作文和素材运用
- 译林版八年级英语下册英语单词(带默写版)
- 高中数学平面几何强化训练(解析版)
评论
0/150
提交评论