




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、建筑制图建筑制图绪绪 论论1.1.考核考核空间想象空间想象能力能力2.2.考核空间分析能力考核空间分析能力3.3.构建构建“点点- -线线- -面面- -体体(基本体(基本体- -组合体)组合体)”知识体系知识体系一、三面正投影图的形成一、三面正投影图的形成V(正立投影面)(正立投影面)HWXZYOVHWXZY1、三面正投影坐标、投影面、投影轴、三面正投影坐标、投影面、投影轴(水平投影面)(水平投影面)(侧立投影面)(侧立投影面)、三个投影面的展开、三个投影面的展开VHWXZ剪开剪开HWHWVHXZ 三个投影面展开以后,三条投影轴成了两条相交的直线;原三个投影面展开以后,三条投影轴成了两条相交
2、的直线;原X、Z轴位置不变,原轴位置不变,原Y轴则分成轴则分成, 两条轴线。两条轴线。 3 3、三面正投影图的作图方法、三面正投影图的作图方法45 XXZ4、三面正投影图的分析、三面正投影图的分析长长宽宽高高三面正投影图之三面正投影图之间的规律:间的规律: 长对正,长对正, 高平齐,高平齐, 宽相等。宽相等。5、三视图的形成及其投影规律、三视图的形成及其投影规律 三面投影的展开三面投影的展开(a)三投影的展开方法;()三投影的展开方法;(b)三视图之间的投影规律)三视图之间的投影规律 三视图的形成及其投影规律三视图的投影规律为:v H面投影和V面投影长对正;v W面投影和V面投影高平齐;v H
3、面投影和W面投影宽相等。二、基本体的三视图二、基本体的三视图 常见的基本几何体平面平面基本体曲面曲面基本体基本体是由各种面围成的。( (一一) ) 棱柱棱柱 由两个底面和几个侧棱面组成。侧棱面与侧棱面的交线叫侧棱线,侧棱线相互平行。adebcabdceecdabADCEBXZY正六棱柱的投影 如图,为一正六棱柱,其顶面、底面均为水平面,它们的水平投影反映实形,正面及侧面投影重影为一直线。一、平面基本体一、平面基本体adebcabdceecdabADCEBXZY正六棱柱的投影 棱柱有六个侧棱面,前后棱面为正平面,它们的正面投影反映实形,水平投影及侧面投影重影为一条直线。adebcabdceecd
4、abADCEBXZY正六棱柱的投影棱柱的其它四个侧棱面均为铅垂面,其水平投影均重影为直线。正面投影和侧面投影均为类似形。1. 棱锥的组成棱锥的组成 由一个底面和几个侧棱面组成。侧棱线交于有限远的一点锥顶。( (二二) ) 棱锥棱锥SABCWVasbsabcbacsXYZ正三棱锥的投影 如图3-3所示为一正三棱锥,锥顶为S,其底面为ABC,呈水平位置,水平投影abc反映实形。 棱面SAB、 SBC是一般位置平面,它们的各个投影均为类似形。 棱面SAC为侧垂面,其侧面投影s”a”c”重影为一直线。2. 棱锥的三视图棱锥的三视图 底边AB、BC为水平线,AC为侧垂线,棱线SB为侧平线,SA、SC为一
5、般位置直线,它们的投影可根据不同位置直线的投影特性进行分析。SABCWVasbsabcbacsXYZ正三棱锥的投影作图步骤1如下: 连接sm并延长,与ac交于2,2m2 在投影ac上求出点的水平投影2。 连接s2,即求出直线S的水平投影。 根据在直线上的点的投影规律,求出M点的水平投影m。 再根据知二求三的方法,求出m”。m”asbc正三棱锥的三面投影图sacba”(b”)c”s”mXY HZYW3.三棱锥表面上取点三棱锥表面上取点作图步骤2如下:11m 过m作m1 ac,交sa于1。 求出点的水平投影1。 过1作1m ac,再根据点在直线上的几何条件,求出m 。 再根据知二求三的方法,求出m
6、”。(具体步骤略)scb正三棱锥的三面投影图sabcaa”(b”)c”s”ms(b)saBacbccsbCASa222正三棱锥表面点的投影13s(b)saBacbccsbCASa(3)3正三棱锥表面点的投影2XZY圆柱的三面投影图HVWaabcdcdacdbAACDBCd”c”d”c”a”b”a”b”1.1.圆柱的投影圆柱的投影圆柱表面由圆柱面和顶面、底面所组成。圆柱面是由一直母线绕与之平行的轴线回转而成。 如图所示,圆柱的轴线垂直于H面,其上下底圆为水平面,水平投影反映实形,其正面和侧面投影重影为一直线。而圆柱面则用曲面投影的转向轮廓线表示。 (一一) 圆柱圆柱二、曲面立体的投影二、曲面立体
7、的投影XZYHWaabcdcdacdbAACDBCd”c”d”c”a”b”a”b”Vabaabba”(b”)a”(b”)c(d)c(d)cdddcc圆柱的投影圆柱投影图的绘制: (1) 先绘出圆柱的对称线、回转轴线。(2)绘出圆柱的顶面和底面。(3)画出正面转向轮廓线和侧面转向轮廓线。正面转向轮廓线侧面转向轮廓线圆柱表面取点 已知圆柱表面上的点M及N正面投影a、 b、m和n,求它们的其余两投影。2.2.圆柱表面上取点圆柱表面上取点 a a” a b (b”) bXZY 圆锥的三面投影图HVWacdbACBSabcdss”c”d”a”(b”)1. 1. 圆锥的投影圆锥的投影圆锥表面由圆锥面和底圆
8、组成。它是一母线绕与它相交的轴线回转而成。如图所示,圆锥轴线垂直H面,底面为水平面,它的水平投影反映实形,正面和侧面投影重影为一直线。对于圆锥面,要分别画出正面和侧面转向轮廓线。正面转向轮廓线侧面转向轮廓线( (二二) )圆锥圆锥圆锥投影图的绘制:sabsabcdc”d”c(d)s”a(b) (1) 先绘出圆锥的对称线、回转轴线。(2)在水平投影面上绘出圆锥底圆,正面投影和侧面投影积聚为直线。 (3) 作出锥顶的正面投影和侧面投影并画出正面转向轮廓线和侧面转向轮廓线。圆锥的投影XZYHVWacdbACBSabcdss”c”d”a”(b”)2.2.圆锥表面取点圆锥表面取点 在圆锥表面上求点,有两
9、种方法:一种是素线法,一种是辅助圆法。方法一:素线法 过M点及锥顶S作一条素线S,先求出素线S的投影,再求出素线上的M点。XZY圆锥的三面投影图HVWacdbACBSabcdss”c”d”a”(b”)mmm”M 已知圆锥表面的点M的正面投影m,求出M点的其它投影。 过ms作圆锥表面上的素线,延长交底圆为1。111”mm”a(b) 圆锥的投影及表面上的点ss”abcdc”d”sabc(d)m 求出素线的水平投影s1及侧面投影s”1”。 求出M点的水平投影和侧面投影。XZY圆锥的三面投影图HVWacdbabcdss”c”d”a”(b”)ACBS方法二:辅助圆法 过M点作一平行与底面的水平辅助圆,该
10、圆的正面投影为过m且平行于ab的直线23,它们的水平投影为一直径等于23的圆,m在圆周上,由此求出m及m”。mMmm”m圆锥的投影及表面上的点sss”aabbc”d”mm” 以s为中心,以sm为半径画圆, 已知圆锥面上M点的水平投影m,求出其m和m”。 作出辅助圆的正面投影23。2323 求出m及m”的投影。mmmnn()n() 例:已知圆锥表面上点M及N的正面投影m和n,求它们的其余两投影。在圆锥表面上定点 a a (a”)三、截交线与相贯线三、截交线与相贯线一、截交线一、截交线立体被平面截去一部分立体被平面截去一部分所所产生的交线产生的交线称为截交线。称为截交线。这个平面称为截平面。这个平
11、面称为截平面。一、一、 平面与平面立体相交平面与平面立体相交平面与平面立体相交时,截交线是平面多边形,多边平面与平面立体相交时,截交线是平面多边形,多边形的各边是截平面与立体各相关表面的交线,多边形形的各边是截平面与立体各相关表面的交线,多边形的各顶点一般是立体的棱线与截平面的交点。因此,的各顶点一般是立体的棱线与截平面的交点。因此,求平面立体截交线的问题,可以归结为求两平面的交求平面立体截交线的问题,可以归结为求两平面的交线和求直线与平面的交点问题。线和求直线与平面的交点问题。例例 求六棱柱被截切后的水平投影和侧面投影求六棱柱被截切后的水平投影和侧面投影作图方法:1) 求棱线与截平面 的共有
12、点2) 连线 3 )根据可见性处理轮廓线1?2?1?2?2?2?2?7?7?5?6?5?6?12345673?4?3?4?截交线截平面截平面截交线二、平面与曲面立体相交二、平面与曲面立体相交1)截平面平行于圆柱轴线截平面平行于圆柱轴线平面截切圆柱平面截切圆柱2 )截平面垂直于圆柱轴线截平面垂直于圆柱轴线3)截平面与圆柱轴线倾斜截平面与圆柱轴线倾斜平面与圆柱相交具体步骤如下:1155373(7)1”5”3”7”222”46844”8”6”例例 如图所示,圆柱被正垂面截切,求出截交线的另外两个投影。如图所示,圆柱被正垂面截切,求出截交线的另外两个投影。二、相贯线二、相贯线两个曲面体相交两个曲面体相
13、交所所产生的交线产生的交线称为相贯线,如称为相贯线,如图所示。图所示。 两曲面立体相交时,相贯线的基本性质是:两曲面立体相交时,相贯线的基本性质是: 相贯线是相交两立体表面的分界线,也是它们的公有线,所以相相贯线是相交两立体表面的分界线,也是它们的公有线,所以相贯线上的点是两立体表面的公有点;贯线上的点是两立体表面的公有点; 由于立体有一定的范围,所以相贯线一般为封闭的空间曲线,特由于立体有一定的范围,所以相贯线一般为封闭的空间曲线,特殊情况下为平面曲线或直线,如下图所示殊情况下为平面曲线或直线,如下图所示例例 如图所示已知两圆柱的三面投影,求作它们的相贯线。如图所示已知两圆柱的三面投影,求作
14、它们的相贯线。分析:分析:由投影图可知,直径不同的由投影图可知,直径不同的两圆柱轴线垂直相交,由于两圆柱轴线垂直相交,由于大圆柱轴线垂直于大圆柱轴线垂直于W W面,小圆面,小圆柱轴线垂直于柱轴线垂直于H H面,所以,相面,所以,相贯线的侧面投影和水平投影贯线的侧面投影和水平投影为圆,只有正面投影需要求为圆,只有正面投影需要求作。作。相贯线为前后左右对称的空相贯线为前后左右对称的空间曲线。间曲线。求正交两圆柱的相贯线作图步骤:(1)求特殊点:直接定出相贯线的最左点 和最右点的三面投影。再求出出相贯线的最前点和最后点的三面投影。求正交两圆柱的相贯线求正交两圆柱的相贯线(2)求一般点:在已知相贯线的
15、侧面投影图上任取一重影点5、6,找出水平投影5、6,然后作出正面投影5、6。 (3) 光滑连相贯线:相贯线的正面投影左右、前后对称,后面的相贯线与前面的相贯线重影,只需按顺序光滑连接前面可见部分的各点的投影,即完成作图。 例 求图中所示两圆柱的相贯线作图: ( 1 ) 先求特殊点( 2 ) 再求一般点( 3 ) 光滑连接正面投影上各点,即得相贯线的正面投影一、轴测图的基本知识一、轴测图的基本知识 将物体连同确定其空间位置的直角坐将物体连同确定其空间位置的直角坐标系,沿不平行于任一坐标面的方向,用标系,沿不平行于任一坐标面的方向,用平行投影法将其投射在单一投影面上所得平行投影法将其投射在单一投影
16、面上所得的具有立体感的图形叫做的具有立体感的图形叫做轴测图轴测图。用正投影法形成的轴测图叫用正投影法形成的轴测图叫正轴测图。正轴测图。 轴测图的形成轴测图的形成POXYZOZ1X1Y1正轴测投影图正轴测投影图S正轴测投影图的形成正轴测投影图的形成 轴测轴、轴间角和轴向伸缩系数轴测轴、轴间角和轴向伸缩系数1. 轴测轴和轴间角轴测轴和轴间角 X1O1Y1, X1O1Z1, Y1O1Z1坐标轴坐标轴轴测轴轴测轴 物体上物体上 OXOX, OYOY, OZ OZ 投影面上投影面上 O O1 1X X1 1,O O1 1Y Y1 1,O O1 1Z Z1 1 建立在物体上的坐标轴在投影面上的投影建立在物
17、体上的坐标轴在投影面上的投影叫做叫做轴测轴轴测轴,轴测轴间的夹角叫做,轴测轴间的夹角叫做轴间角轴间角。轴间角轴间角投影面投影面O1X1Y1Z1投影面投影面O1X1Y1Z1YXZ正轴测图正轴测图斜轴测图斜轴测图OOXYZ2. 轴向伸缩系数轴向伸缩系数O O1A A1OAOA = p p X X轴轴向伸缩系数轴轴向伸缩系数O O1B B1 OBOB = q q Y Y轴轴向伸缩系数轴轴向伸缩系数O O1C C1OCOC = r rZ Z轴轴向伸缩系数轴轴向伸缩系数 物体上平行于坐标轴的线段在轴测图上物体上平行于坐标轴的线段在轴测图上的长度与实际长度之比叫做的长度与实际长度之比叫做轴向伸缩系数轴向伸
18、缩系数。ABAB投影面投影面O OX XY YZ ZO O1X X1Y Y1Z Z1投影面投影面O O1X X1Y Y1Z Z1Y YX XZ Z正轴测图正轴测图斜轴测图斜轴测图CCA1 A1 B1 B1 C1 C1 O O 轴间角与轴向伸缩系数轴间角与轴向伸缩系数 正等轴测图正等轴测图轴向轴向伸缩伸缩系数:系数:p = q = r = 0.82 轴间角:轴间角: X X1O O1Y Y1 = X X1O O1Z Z1 = Y Y1O O1Z Z1 = 120120简化轴向简化轴向伸缩伸缩系数:系数:p = q = r = 1120120120Z1O1X1Y1按轴向伸缩系数绘制按轴向伸缩系数绘
19、制LLL0.82L0.82L0.82L按简化轴向伸缩系数绘制按简化轴向伸缩系数绘制边长为边长为L L的正的正方体的轴测图方体的轴测图3030 二、二、正等测轴测图的画法正等测轴测图的画法(1) 在视图上建立坐标系在视图上建立坐标系(2) 画出正等测轴测轴画出正等测轴测轴(3) 按坐标关系画出物体的轴测图按坐标关系画出物体的轴测图2 根据形体的形状特点选定适当的坐标轴,然后将根据形体的形状特点选定适当的坐标轴,然后将形体上各点的坐标关系转移到轴测图上,以定出形体上形体上各点的坐标关系转移到轴测图上,以定出形体上各点的轴测投影,从而作出形体的轴测图。各点的轴测投影,从而作出形体的轴测图。oxyzz
20、xyoo 画四棱柱的正等轴测图画四棱柱的正等轴测图2344X1 O1Y1Z1 平面体的正等轴测图画法平面体的正等轴测图画法 坐标法坐标法c s s a b c a b sabcO OO OO OX XX XY YY YZ ZZ Z例例1 1:画三棱锥的正等轴测图画三棱锥的正等轴测图X X1 O O1Y Y1Z Z1B BC C S SA A例2:画六棱柱的正等轴测图画六棱柱的正等轴测图例例3 3:已知三视图,画正等轴测图。已知三视图,画正等轴测图。 切割法切割法例例4 4:已知三视图,画正等轴测图已知三视图,画正等轴测图。 叠加法叠加法 回转体的正等轴测图画法回转体的正等轴测图画法(1)(1)
21、平行于各个坐标面的圆平行于各个坐标面的圆 轴测投影为椭圆的画法轴测投影为椭圆的画法X1Y1Z1 平行于平行于W(Y(Y1 1Z Z1 1) )面的面的椭圆长轴椭圆长轴O O1 1X X1 1轴轴平行于平行于H(XH(X1 1Y Y1 1) )面的面的椭圆长轴椭圆长轴O O1 1Z Z1 1轴轴平行于平行于V(XV(X1 1Z Z1 1) )面的面的椭圆长轴椭圆长轴O O1 1Y Y1 1轴轴画法:画法: 画圆的外切菱形画圆的外切菱形 确定四个圆心和半径确定四个圆心和半径分别画出四段彼此相切的圆弧分别画出四段彼此相切的圆弧(以平行于(以平行于H面的圆为例)面的圆为例)四心椭圆法四心椭圆法(菱形法
22、菱形法)abefdddF F1E E1B B1A A1画法:画法:根据圆直径画圆根据圆直径画圆圆与短轴交于两个圆心圆与短轴交于两个圆心O O2 2、O O3 3分别画出四段彼此相切的圆弧分别画出四段彼此相切的圆弧四心扁圆法四心扁圆法X11Y1X1OY1X1Y12O3O1O3O2O4OO5ABC2OA1OB3OKLMN5XO11LO43OOKO2MY1NC圆与轴测轴交于两点圆与轴测轴交于两点A A、B B为半径为半径画小圆与长轴交于另两个圆心画小圆与长轴交于另两个圆心O O4 4、O O5 5画法:画法:四心扁圆法四心扁圆法1O1XY14OO52O3OABMKLNC5786XYxy1234坐标法
23、坐标法画法:画法:例例1:画圆台的正等轴测图画圆台的正等轴测图例例2:画圆柱的正等轴测图画圆柱的正等轴测图 圆角的正等轴测图的画法圆角的正等轴测图的画法O O2D D1C C1B B1O O1A A1G G1O O5O O4G G2D D2E E2简便画法:简便画法:1.1.截取截取 O O1 1D D1 1=O=O1 1G G1 1=A=A1 1E E1 1=A=A1 1F F1 1 = =圆角半径圆角半径2.2.作作 O O2 2D D1 1OO1 1A A1 1 , O O2 2G G1 1OO1 1C C1 1 O O3 3 E E1 1OO1 1A A1 1 , O O3 3F F1
24、 1AA1 1B B1 1 3.3.分别以分别以 O O2 2、 O O3 3为圆心,为圆心, O O2 2D D1 1、 O O3 3E E1 1为半径画圆弧为半径画圆弧4.4.定后端面的圆心,画后端面定后端面的圆心,画后端面 的圆弧的圆弧5.5.定后端面的切点定后端面的切点D D、G G、E E 6.6.作公切线作公切线例例1 1:F F1E E1O O3Z1 X1O1Y1 OYXZXOZ1Y1X1例例2 2:整理、完成作图OYXZXOZ1 X1O1Y1 组合体的正等测轴测图的画法1. 1. 切割法切割法1882516203610XYZO818252036ZXXYYZOOO步骤步骤1步骤步
25、骤21882516203610ZXXYYZOOO1610XYZO2. 2. 叠加法叠加法3262462820824ZZYYXXOOOZYXO步骤步骤1 1步骤步骤2 23262462820824ZZYYXXOOOZYXO步骤步骤3 33262462820824ZZYYXXOOOZYXO完完成成3262462820824ZZYYXXOOO五、组合体投影图五、组合体投影图1 1、补线、补线(1)(2)(3)(4)(5)将形体的主视图(将形体的主视图(V V 投影)画为全剖面图,侧视投影)画为全剖面图,侧视图(图(W W投影)画成半剖图。投影)画成半剖图。两个剖面两个剖面图中剖面图中剖面线的方向线的
26、方向必须一致必须一致分界线是点划线分界线是点划线0.5b剖面图可以不注写编号的情况剖面图可以不注写编号的情况剖切平面通过对称中心面时;剖面图的投影方向与基本视图的投影方向相同时; ;剖面图处在基本视图的位置时;2 2、补第三视图(知二求三)、补第三视图(知二求三)(1 1)补出左)补出左视图视图a. a.b. b.c. c.d. d.(2 2)补出俯视图)补出俯视图a. a.b. b. 补出形体的俯视图补出形体的俯视图c. c.补出形体的俯视图补出形体的俯视图d. d.补出形体的俯视图补出形体的俯视图e. e.补出形体的俯视图补出形体的俯视图200100尺寸的组成:尺寸界线、尺寸线、起止符号、尺寸数字尺寸的组成:尺寸界线、尺寸线、起止符号、尺寸数字一、尺寸标一、尺寸标 注规则注规则 注写尺寸要求注写尺寸要求: : 正确、完整、清晰、合理正确、完整、清晰、合理。尺寸界线尺寸界线 细实线,一般与被注长度垂直,一端离开图样轮廓线2,另一端超
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内购房转让合同范本
- 个人转让德文合同范本
- 分包混凝土合同范本
- 买卖车位转让合同范本
- 包子工用工合同范本
- 创业加盟合同范本
- 广西买房合同范本
- 出国劳务外派合同范本
- 劳动合同范本工资
- 出租包车合同范本
- 2022-2023学年湖南省长沙市统招专升本语文模拟练习题三及答案
- 社会救助法课件
- 1.装配式建筑概述(装配式混凝土结构施工技术)
- 第七讲+汉字字音
- 新零件的成熟保障MLA
- 【基于杜邦分析法的企业盈利能力研究国内外文献综述4000字】
- 初中语文七下-上下句默写
- 《董存瑞舍身炸碉堡》PPT课件新
- 新川教版信息技术六年级下册全册教案
- 第20章补充芯片粘接技术
- 旅行社运营实务电子课件 5.1 旅行社电子商务概念
评论
0/150
提交评论