




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.小学六年级数学第三单元?分数乘法?教案本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的根底上编排的。能进一步理解分数的意义,为教学分数除法打下根底。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探究算法、总结法那么的过程中开展数学考虑的才能。下表是全单元教学内容的编排。分数与整数相乘用乘法求几个一样分数的和例1用乘法求整数的几分之几是多少例2求一个数的几分之几是多少的实际问题例3 练习八分数乘分数分数乘分数例4、例5分数连乘例6 练习九倒数倒数的意义,求倒数的方法例7 练习十整理与练习教材在编
2、排上有以下特点。第一,以计算法那么的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容构造。乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的开展。因此,分数乘法的意义、计算法那么、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、开展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法那么、应用三方面的有机结合,优化了知识构造,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分
3、数范围,激活已有的知识经历;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式101/2和102/5,联络现实的数量关系体会这些算式的详细含义,得出求一个数的几分之几是多少,可以用乘法计算的结论,开展了乘法的意义。在计算两个乘法算式时,稳固了分数与整数相乘的算法。第二,知识开展线索明晰,前后联络严密,各道例题的教学任务明确。以下图是本单元教材里的计算知识构造图。先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原那么。而且,整数乘分数还能与整数乘法建立联络,应用整数乘法知识,为分数乘法的教学开好
4、头。整数乘分数先是求几个一样分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正由于运算意义和整数乘法一致,可以把整数乘分数转化成同分母分数一样,体会并得出整数乘分数的计算法那么。后者在运算意义上有很大的扩展,乘法不仅能求几个一样加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。而例2的算法,在前面已经解决了。分数乘分数先教学根底知识,再培养计算技能。例4和例5要把求一个数的几分之几是多少的认识迁移到分数乘分数,深化理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法那么。所以,这两道例题着重教学根底知识。例
5、6教学分数连乘,稳固计算法那么的同时,培养分子、分母穿插约分的技能。第三,编排倒数知识,为分数除法作准备。分数除法经常要转化成分数乘法进展计算,转化需要倒数的知识。因此,本单元在分数乘法的教学根本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提早作准备。一、 例1着重教学分数与整数相乘的算法。首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经历,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘法算式;营造探究的气氛,放手让学生创新分数乘整数的方法。例1的第1个问题求3个一样分数的和。在代表1米绸带的线条图上,已经表示出做1朵
6、绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是求3个3/10是多少,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一部分学生会列乘法算式33/10或3/103。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个一样分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式33/10和3/103都可以。让学生研究分数乘整数的算法,把分子相加、分母不变加工成分子与整数相乘,分母不变,获得新的计算方
7、法。尤其是在方框里填数: 3/10+3/10+3/10=+/10=/10,经历分子相加转化成分子与整数相乘的过程,建构了新的计算方法。例1的第2个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决一样分数连加的问题比较简便,稳固运算的意义和方法。这道例题还指导了分数乘法中的约分,兔子卡通先把分子与整数相乘,再把积约分化简。大象卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法那么计算,再化简结果。后一种方法由于先约分,算得的积是最简分数,而且
8、相乘也更简单。要指导学生理解并喜欢大象卡通那样的算法,对下面继续教学分数乘分数有好处。二、 例2着重教学用乘法求一个数的几分之几是多少。10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级下册认识分数里曾经解答过。那时的解答是通过102、1052这些整数乘除运算进展的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出求一个数的几分之几是多少,用乘法计算这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。在例2之前,乘法只用于求一样加数的和。教学例2之后,乘法还可以求一个数的几分之几。这是乘法概念的扩展。为了帮助学生理解乘法的新含义,例2在编写时注意了以下三
9、点:首先是加强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出详细而形象的解释。一方面让学生在体验10朵的1/2的意义时,想到102=5这种算法。另一方面又利用非常熟悉的102促进对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及1052的计算过程,体会10的2/5的含义。然后是讲述新知识。教材说:求10朵的1/2是多少,可以用乘法计算。并写出算式101/2。还说求10朵的2/5是多少,可以用102/5。在分数意义的平台上,指出分数乘法的实际应用。利用101/2和102/5这两个实例,概括出
10、求一个数的几分之几是多少,用乘法计算。这个结论开展了原来的乘法概念,使乘法有了新的应用领域。沟通新旧算法的联络,更好地理解分数乘法。假如比较算式101/2和102,可以发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式102/5和1052都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可比照的内容,让学生反复体验分数乘法。练一练加强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受一个数的几分之几的意义。再列式121/3、204/5计算,进展较抽象的考虑并用数学方法解决求一个数的
11、几分之几的问题。两者结合,加强了分数乘法的概念。第2题用求一个数的几分之几描绘图示的数量关系,在现实问题数学问题数学方法的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以101/2、102/5都可以让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。三、 例3用分数乘法解决实际问题。例2以及练习八第611题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为比一个数多或少几分之几是较难理解的数量关系,而这些关系又普遍存在于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。
12、解答例3的关键是理解红花比黄花多1/10、绿花比黄花少2/5的含义。从本质上讲,它们仍然是一个数的几分之几,但是比较难懂。教材用条形图呈现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过红花比黄花多的是多少朵的1/10这个问题,引导学生仔细研究图意,正确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。比一个数少几分之几是比一个数多几分之几的变式,安排在试一试里教学。在例3的条形图上,假如把表示黄花的直条平均分成5份每2格看成1份,绿花比黄
13、花少这样的2份。所以,绿花比黄花少2/5的含义是: 绿花比黄花少的朵数相当于黄花的2/5。教材要求学生仿照红花比黄花多1/10那样,在条形图的直观支持下,分析并理解数量关系。通过独立解决变式的问题,实现比一个数多几分之几向比一个数少几分之几的认知迁移。第44页第14题分析比一个数多少几分之几的意义是概念专项练习。在说分数的意义时,要先指出把什么看作单位1,平均分成多少份,然后指出什么是这样的几份。如皮球的个数比足球多2/5,应该把足球个数看作单位1的量,把它平均分成5份,皮球比足球多的个数相当于这样的2份。这题要把数量关系式补充完好,数量关系式可以视为一种数学模型。从解题角度上看数量关系式,它
14、有助于列出算式或列出方程;从思维角度上看数量关系式,把文字表达的数量关系改写成关系式,压缩了思维过程,精简了数学语言,表达了考虑结果;从教学角度上看数量关系式,它能进一步加深理解概念,及时暴露认识的偏向。假如比照一个数多少几分之几的理解不正确,一定会在写出的数量关系式上有所表现。仍以皮球的个数比足球多2/5为例,假如在等号右边填出皮球的个数,就是概念错误造成的。解答第1517题,都要以正确的数量关系为前提,教材编排第14题的意图是非常清楚的。四、 例4、例5构建分数乘法的计算法那么。分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么可以这样计算却很不容易,是再次应用分数概念开
15、展演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会分子相乘、分母相乘是合理的。构建分数乘法的计算法那么,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的试一试里完成这个内容的教学。例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线部分各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2
16、平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的部分占1/2的1/4,右图中画斜线的部分占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从求一个数的几分之几用乘法计算推理得出1/2的1/4可以用1/21/4计算,1/2的3/4可以用1/23/4计算。在写两道算式时,体会一个数不仅是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/21/4=1/8、1/23/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,
17、分母相乘的得数是积的分母。例5继续体会分数乘分数的算法。已给出了两道算式2/31/5和2/34/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会正确画图和看到算式的积。如2/31/5是求2/3的1/5是多少,要把表示2/3的那个部分平均分成5份,用斜线画出其中的1份。斜线部分占长方形的2/15,2/15就是2/31/5的积。又如2/34/5是求2/3的4/5是多少,要把表示2/3的那块涂色部分平均分成5份,用斜线画出其中的4份,由此得到2/34/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感
18、受积的分子2和8是两个乘数的分子的乘积,积的分母15是两个乘数的分母的乘积。两道例题的教学线索不同,认知程度也不同。例4经历看图写式得积的过程,感受分子相乘、分母相乘的可能性。例5通过看式画图得积体验分子相乘、分母相乘的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法那么。第55页应用整数都能写成分母是1的分数这个知识,把2/113和45/6都改写成分数乘分数的形式,使分子相乘的积作分子,分母相乘的积作分母也适用于分数乘整数的计算,成为分数乘法的计算法那么。五、 例6教学分数连乘的算法和技巧。例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,由于二班做的朵数
19、是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析3/4的意思,理解这里是把二班做的朵数看作单位1。通过画图就能很快知道应先算二班做的朵数。例题先分步列式解答,再列综合式解答。教学要以综合算式为主,因为在综合算式里要讲分数连乘的算法。关于分数连乘计算有两点内容:一是各个乘数的分子连乘的得数是积的分子,各个乘数的分母连乘的得数是积的分母。二是要尽量先约分,再相乘。就是说,要把分子、分母之间可以进展的约分都完成以后,相乘就简单了。两点内容学生都能承受,先充分地约分可能会不大适应。教学不必在为什么这样约分上纠缠,学生有计
20、算结果应是最简分数的认识,可以理解计算过程中要尽可能地约分。教学要清楚地展示约分活动,如整数135和分母9之间的约分,分子8和分母4的约分。在练一练里还要指导不相邻的分子与分母的约分,如22/275/119/10中的分母27和分子9的约分,帮助学生逐渐掌握约分的技巧。六、 例7教学倒数的知识。倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是根底知识,后一点是计算分数除法所需要的根本技能。建立倒数概念之后,求一个数的倒数就容易了。因此,例7非常重视概念的形成以及对概念的准确把握。“师之概念,大体是从先秦时期的“师长、师傅、先生而来。其中“师傅更早那么意指春秋时国君的老师。
21、?说文解字?中有注曰:“师教人以道者之称也。“师之含义,如今泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师的原意并非由“老而形容“师。“老在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老“师连用最初见于?史记?,有“荀卿最为老师之说法。渐渐“老师之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师当然不是今日意义上的“老师,其只是“老和“师的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道,但其不一定是知识的传播者。今天看来,“老师的必要条件不光是拥有知识,更重于传播知识。教学从寻找乘积是1的分数开场。在8个分数中能找到3对乘积是1的分数,
22、这项貌似游戏的活动凸显了倒数是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字表达强调两个数互为倒数,还以3/8和8/3为例,帮助学生体会互为倒数的意思指甲是乙的倒数,乙也是甲的倒数,这是倒数概念的又一个内涵。“师之概念,大体是从先秦时期的“师长、师傅、先生而来。其中“师傅更早那么意指春秋时国君的老师。?说文解字?中有注曰:“师教人以道者之称也。“师之含义,如今泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师的原意并非由“老而形容“师。“老在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老“师连用最初见于?史记?,有“荀卿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同内部协议书
- 办公室合同协议书图片
- 瑜伽培训项目计划书
- 包车包人合同协议书范本
- 入股协议书合同书怎么写
- 新荣耀员工合同协议书
- 解除药品加盟合同协议书
- 2025秋五年级上册语文(统编版)-【13 少年中国说(节选)】作业课件
- 假结婚财产协议书合同
- 产城(产业发展基础、城服务功能)融合示范建设总体方案
- 2025四川中江振鑫产业集团招聘14人笔试参考题库附带答案详解
- 森林管护工技师考试试题及答案
- 车棚维修协议书
- 2024年中国航空工装行业发展现状、市场运行态势及发展前景预测报告
- 中考英语688高频词大纲词频表
- 一年级下册口算题卡大全(口算练习题50套直接打印版)
- 消防安全主题班会课件(共17张ppt)
- ××会务组织重大失误检讨书
- 煤炭项目建议书【范文参考】
- 捡垃圾环保公益活动策划方案.docx
- JTT 1344-2020纯电动汽车维护、检测、诊断技术规范_(高清-最新)
评论
0/150
提交评论