关于高等数学在实际生活中的应用_第1页
关于高等数学在实际生活中的应用_第2页
关于高等数学在实际生活中的应用_第3页
关于高等数学在实际生活中的应用_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等数学知识在实际生活中的应用一、数学建模的应用数学建模的一般方法是理论分析的方法,即根据客观事物本身的性质,分析因果关系,在适当的假设下用数学工具去描述其数量特征.(一)数学建模的一般方法和步骤(1)了解问题,明确目的.在建模前要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察.明确所要解决问题的目的和要求,并按要求收集必要的数据.(2)对问题进行简化和假设.一般地,一个问题是复杂的,涉及的方面较多,不可能考虑到所有的因素,这就要求我们在明确目的、掌握资料的根底上抓住主要矛盾,舍去一些次要因素,对问题进行适当的简化,提出几条合理的假设.不同的简化和假设,有可能得出不同的模型和结果.(

2、3)建立模型.在所作简化和假设的根底上,选择适当的数学理论和方法建立数学模型.在保证精度的前提下应尽量用简单的数学方法,以便推广使用.(4)对模型进行分析、检验和修改.建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证实、稳定性讨论等数学的运算和证实得到数量结果,将此结果与实际问题进行比拟,以验证模型的合理性.一般地,一个模型要经过反复地修改才能成功.(5)模型的应用.用已建立的模型分析、解释已有的现象,并预测未来的开展趋势,以便给人们的决策提供参考.归纳起来,数学建模的主要步骤可以用下面的框图来说明:问题*假设*建模*分析应用检验、修改图1二数学建模的范例例教室的墙壁上

3、挂着一块黑板,学生距离墙壁多远,能够看得最清楚这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得越近越好呢先建立一个非常简单的模型:模型1:先对问题进行如下假设:1 .假设这是一个普通的教室不是阶梯教室,黑板的上、下边缘在学生水平视线的上方a米和b处.2 .看黑板的清楚程度只与视角的大小有关.设学生D距黑板x米,视黑板上、下边缘的的仰角分别为£,P由假设知:所以,当且仅当x=Jab日寸,tana-P最大,从而视角a-P最大.从结果我们可以看出,最正确的座位既

4、不在最前面,也不在最后面.坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况下面我们在原有模型的根底上,将问题复杂一些.模型2:设教室是一间阶梯教室,如图2.3-2所示.为了简化计算我们将阶梯面看成一个斜面,与水平面成¥角,以黑板所在直线为y轴,以水平线为x轴,建立坐标系(见图2.3-2).那么直线OE的方程(除原点)为:假设学生D距黑板的水平距离为x,那么D在坐标系中的坐标为(x,xtan¥),那么:tana=,tanP=bxx所以tan(u-a=空4二吗1tan二tan:设f(x)=x+ab-(atan.btan:')x+tan2*2,要使tan©

5、;,)最大,只要f(x)最小x就可以了.对f(x)求导得:当x>|_ab时,f'(x)>0,那么f(x)随x的增大而增大;当0<x<口b时,1tan2,1tan2f'(x)>0,那么f(x)随x的增大而减小,由由于f(x)是连续的,所以当x=ab21tan2时,f(x)取最小值,也就是x=Jab2寸,学生的视角最大.,1tan通过这两个模型,我们便可以解释为什么学生总愿意坐在中间几排.模型1和模型2所应用的根本知识都是相同的,只是由于假设的教室的环境不同,建立的模型有些细微差异,所以结果不同,但这两个结果都是根本符合实际的.在解题过程中,我们只考虑

6、了一个因素,那就是视角,其实我们还可以考虑更多的因素,比方:前面学生对后面学生的遮挡,学生看黑板的舒适度(视线与水平面成多少度角最舒服),等.我们考虑的因素越多,所的结果就会越合理.但有时如果考虑的因素过多、过细的话,解题过程就会相当繁琐,有时甚至得不到结果.所以“简化假设时就需要我们冷静的分析,在众多的因素中抓住主要矛盾,作出最正确的选择.因此在建立模型时既要符合实际,又要力求计算简便.二、矩阵在实际生活中的应用(一)有关矩阵的乘法矩阵a=iab与a=嘀乘_cd.yAa=abx=axby|_cdycxdyac,一x_Fb1,ux_-a,uX+b,uy_|ax+Kby"y_'

7、cd九yc九x+d九y1cx十八dy(二)矩阵应用的范例一人口流动问题例假设某个中小城市及郊区乡镇共有40万人从事农、工、商工作,假定这个总人数在假设干年内保持不变,而社会调查说明:(1)在这40万就业人员中,目前约有25万人从事农业,10万人从事工业,5万人经商;(2)在务农人员中,每年约有10峨为务工,10峨为经商;(3)在务工人员中,每年约有10峨为务农,20峨为经商;(4)在经商人员中,每年约有10峨为务农,20峨为务工.现欲预测一、二年后从事各业人员的人数,以及经过多年之后,从事各业人员总数之开展趋势.解:假设用三维向量(xi,yi,Zi)T表示第i年后从事这三种职业的人员总数,贝U(x°,y°,Z°)T=(25,10,5)t.而欲求(x1,y,z1)t,(x2,y2,Z2)T并考察在n8时(xn,yn,Zn)T的开展趋势.依题意,一年后,从事农、工、商的人员总数应为即X1=0.8、0.1y00.1Z0TYi=0T1x00.7y00.2Z0以(X0*3",1%15)0.1QA即0%即一年业人员的人数分别为21.5万10.5万、8万人任/019.05即两年后从事各地人员A勺点数给速U为.19.051万1|11.1万、9.85万人.进而IV|InQC推得.lZ2lZ1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论