版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、时频分析与小波变换专题训练报告题 目平移不变量小波去噪方法学 院自动化学院专 业掌握理论与掌握工程学 号131060024同学姓名马秉宇指导老师佘青山1.前言小波变换的低熵性、多分辨率性、去相关性和小波选择的多样系,使其广泛应用于含噪信号消噪领域。1994年,Donoho等提出了包括软阈值法和硬阈值法的小波阈值收缩法(WaveShrink)方法,该方法在最小均方误差意义下可达近似最优,并且可取得较好的消噪效果。软阈值法消噪得到的信号整体连续性好,不会产生附和的振荡,但是与原信号的逼近程度差;硬阈值法消噪得到的信号与原信号逼近程度好,但会产生附加的振荡,不论接受软阈值方法还是硬阈值方法消噪,在有
2、些情况下,阈值法去噪后信号的某些不连续点四周和信号的快速变化点处,会消失伪吉布斯现象,即在这些点去噪信号会在一个特定的目标水平上下跳变,在肯定程度影响了消噪效果。平移不变量(translation-invariant,TI)小波消噪可抑制伪吉布斯现象,如对含噪的Blocks、Bumps、HeaviSine和Doppler信号进行平移不变量小波消噪处理,较好地抑制了伪吉布斯现象;李肃义等对心电信号进行平移不变量消噪处理,达到了抑制伪吉布斯现象的效果,为了提高消噪后信号的连续性和原信号的逼近度,综合软、硬阈值小波消噪信号处理的优势,同时使处理后的信号不再消失伪吉布斯现象,本文将这种方法应用于脑电信
3、号的消噪处理,实验结果表明,该方法可以有效地提高信噪比,降低均方误差,并能较好地保留EEG信号有效特征。2.平移不变量小波去噪原理2.1 正交小波变换1998年,Mallet在构造正交小波基时提出了多分辨率分析的概念,并给出了正交小波变换快速算法,即Mallet算法,依据过分辨率分析的理论,若为信号的离散采样数据,则信号的正交小波变换的分解公式为:其中为尺度系数,为小波系数,h,g是一对正交镜像滤波器组,j为分解层数,N为离散采样点数。从信号滤波的角度看,正交小波分解是将离散信号分别通过一个低通和高通滤波器进行滤波,滤波输出分别对应信号的低频概貌和高频细节,并且每次分解都是对低频部分进行分解,
4、而高频部分则不再连续分解。每次分解的信号长度均减半,相当于在滤波后进行了“二抽一采样”。正交小波变换的重构过程是分解的逆运算,其重构公式为:2.2 小波变换阈值去噪假设N点离散含噪信号为式中为原始信号,为听从的高斯白噪声。对各层小波系数进行阈值处理,传统阈值处理方法有硬阈值法和软阈值法两种,其中硬阈值处理方法是即,比较含噪信号的小波系数与所选定的阈值,小于阈值的点变为0;大于等于阈值的点保持不变。软阈值处理方法是即,比较含噪信号的小波系数与选定的阈值,大于等于阈值的点,收缩为该点值与阈值的差值;小于等于阈值相反数的点,收缩为该点值与阈值的和;阈值小于等于阈值的点变为零。对信号作小波变换后,噪声
5、的小波变换系数主要集中在小尺度上,原始信号的小波变换系数主要集中在大尺度上。小波阈值法消噪就是接受合适的阈值处理方法估量原始信号的小波变换系数并进行重构。2.3 平移不变量小波去噪原理伪吉布斯现象与信号的不连续点的位置有关,更精确地说,和信号的特征(如不连续点)与小波基元素的特征之间的精确对准有关,正交小波变换具有平移不变性,因此可以通过平移含噪信号来转变不连续点的位置,再对平移后的信号进行阈值法去噪处理,然后把去噪后的信号在进行相反的平移,便可以得到原始含噪信号的去噪信号。假如原始含噪信号包含若干个不连续点,它们之间会相互产生干扰,一个不连续点的最佳平移可能是另一个不连续点的最差平移。所以不
6、能接受单一平移,通常接受通过转变平移量,重复平移消噪过程,并把每次平移消噪后的结果求平均的方法消除噪声,即所谓的“平移去噪平均”的平移量小波去噪方法。对于一个信号,我们用表示对信号进行的时域平移,是正整数,即且可逆,令,然后用表示对信号用Donoho的阈值法进行去噪处理,Ave表示平均,则n次循环平移的平移不变量小波去噪方法可以用下式表示: 上式处理过程:首先把原始含噪信号在时域重复平移个单位,再对各次平移后的信号进行小波阈值消噪,然后对各次消噪后的信号进行相同单位的反向平移,最后将各次的处理结果求平均值。3.实验方案本次实验数据来自于“BCI Competiton”实验数据,将数据直接导入m
7、atlab中即可。平移不变量小波去噪简略方法如下:(1)对含噪的EEG信号进行小波分解。依据Mallet最优小波基的选择准则,综合考虑了小波基的对称性、正交性、消失矩及紧支性等数学特性,最终选择Sym8小波基,经对原始含噪信号进行不同分解层数试验比较,最终选择4层分解。因此,本实验接受Sym8小波,对原始含噪信号进行4层小波分解,提取各个尺度上的小波系数。(2)对原始含噪EEG信号进行小波4尺度分解,得到各个尺度上的小波系数,然后选择用软阈值法,分别对各尺度上的高频小波系数进行估量处理。其中,全局阈值,式中为信号长度,由于噪声主要集中在最高分辨率,所以可用小波系数估量,取。(3)结合“平移去噪
8、平均”的平移不变量小波去噪法和阈值量化算法,对含噪EEG信号进行消噪。文中将含噪EEG信号向左循环平移1位,平移4次,然后将各次平移信号消噪后进行相反平移,最后对每次平移后的结果求平均。(4)为了进一步商量消噪的客观结果,在标准EEG信号中加入高斯白噪声,用Sym8小波对其进行4尺度分解,并用软阈值法和平移不变量小波去噪方法对含噪信号进行消噪。最后用信噪比(SNR)和均方根误差(RMES)来评估消噪结果。信噪比的计算方法是均方根误差的计算方法是4. 实验结果和分析本文所使用的原始EEG信号如下图中的original signal。图(1),(2),(3)分别是对噪声信噪比为5dB,15dB,3
9、0dB的三种原始加噪信号进行软阈值小波消噪和平移不变量小波消噪的实验仿真图。图(1) 对噪声信噪比为5dB加噪信号消噪图(2) 对噪声信噪比为15dB加噪信号消噪图(3) 对噪声信噪比为30dB加噪信号消噪图(1)(3)只是给出了定性的消噪结果对比分析,为了定量地分析几种消噪方法的结果,本文设计了一种向EEG信号中加入信噪比为5dB、15dB、30dB的高斯白噪声的方法,信号加噪之后再用软阈值法和平移不变量小波去噪分别对其进行消噪处理。最后利用公式计算消噪后信号的信噪比和均方误差,结果如下表:表1 消噪结果的SNR和RMES比较噪声信噪比/dB软阈值法平移不变量小波去噪方法SNRRMESSNR
10、RMES50.895411.99446.05736.6204155.41946.353512.88962.68843015.20552.022921.60680.9681 依据上表所列数据,平移不变量小波去噪方法对加噪的EEG信号消噪结果的信噪比明显改善,且均方误差也明显变小。综合图(1)(3)和表1的分析结果,可以得出平移不变量小波消噪方法对EEG信号的消噪结果优于软阈值法。5.小结本文接受“平移去噪平均”的平移不变量小波去噪的算法对脑电信号进行去噪,经过matlab仿真实验的结果表明,该方法与阈值法相比,能够有效地去除伪吉布斯现象,得到比阈值法去噪更好的视觉效果;用该方法去噪还能削减原信号与去噪信号的均方根,提高信噪比,总的来看,此方法是一种较阈值法去噪更好的一种方法。本文设计的平移不变量小波去噪算法不足之处在于处理高频小波系数接受的软阈值法,在将来学习中应该进一步改进阈值法来处理高频小波系数,以达到更好的去噪效果。内容总结(1)时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国村镇银行市场前景调研及发展模式分析报告
- 2024-2030年中国旅游文化书籍项目可行性研究报告
- 幼儿园防溺水安全演习方案
- 化疗药物配置的规范流程
- 体育教师个人成长计划
- 家庭聚会餐饮配送工作方案
- 旅游导览员形象设计方案
- 婚庆服务售后满意度提升方案
- 信息技术2.0提升教师个人研修计划
- 幼儿园小班字母课程设计
- 抖音火花合同电子版获取教程
- DZ∕T 0323-2018 硅灰石、透辉石、透闪石、长石矿产地质勘查规范(附修改单)(正式版)
- 电影赏析绿皮书课件(内容详细)
- GB/T 43969-2024智能语音控制器通用安全技术要求
- 在线网课知慧《大学生极简经济学(山石化)》单元测试考核答案
- 中药房整改计划方案
- 2024年-新生儿复苏参考课件
- 西方政治思想的历史发展脉络
- 2024年湖南高速铁路职业技术学院单招职业技能测试题库及答案解析
- 外国人的汉语之谜怎么破智慧树知到期末考试答案2024年
- 人工器官探秘智慧树知到期末考试答案2024年
评论
0/150
提交评论