版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、答案与评分标准一、解答题(共18小题,满分150分)1、a, b为实数,下列各式对吗?若不对,应附加什么条件?(1) |a+b|=|a|+|b|;(2) |ab|=|a|b|;(3) |a - b|=|b a| ;(4)若 |a|=b ,则 a=b;(5)若 |a| < |b| ,则 av b;(6)若 a>b,则 |a| > |b| .考点:绝对值;不等式的性质。分析:根据绝对值和不等式的性质对每一小题进行分析.解答:解:(1)错误.当a, b同号或其中一个为 0时成立.(2)正确.(3)正确.(4)错误.当a涮时成立.(5)错误.当b>0时成立.(6)错误.当a+b
2、>0时成立.点评:本题主要考查了绝对值和不等式的有关内容.需熟练掌握和运用绝对值和不等式的性质.2、已知有理数a、b、c在数轴上的对应点如图所示,化简: |b - a|+|a+c| - 2|c - b| .c qa考点:整式的加减;数轴;绝对值。分析:解决此题关键要对 a, b, c与0进行比较,进而确定 b - a, a+c, c-b与0的关系,从而很好的去掉绝对 值符号.解答:解:由数轴可知:a>b>0>c, |a| >|c| ,贝 Ub a<0, a+c>0, c - b< 0.|b a|+|a+c| 2|c b|="(b-a)
3、+ (a+c) - 2- (c-b)=b+a+a+c+2c 2b=2a- 3b+3c.点评:在去绝对值符号时要注意:大于 0的数值绝对值是它本身,小于零的数值绝对值是它的相反数.3、已知 xv- 3,化简:|3+|2 - |1+x|.考点:绝对值。专题:计算题。分析:这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解答:解:XV 3,1+x<0, 3+XV0,.原式=|3+|2+ (1+x) | ,=|3+|3+x|,=|3 - (3+x) | ,=| -x| , =-x.点评:本题考查了绝对值的知识,注意对于含有多层绝对值符号的问题,要从里往外一层一层地去绝对值符号
4、.4、若abc4,则-pj 占+ -的所有可能值是什么? |b| |c|考点:绝对值。专题:计算题;分类讨论。分析:由已知可得,a, b, c均不为零,因为题中没有指明 a, b, c的正负,故应该分四种情况: (1)当a, b, c 均大于零时;(2)当a,b, c均小于零时;(3)当a, b, c中有两个大于零,一个小于零时;(4)当a,b,c中有两个小于零,一个大于零时,从而确定答案.解答:解:abc用,a孙b加,c电(1)当a, b, c均大于零时,原式=3;(2)当a, b, c均小于零时,原式=-3;(3)当a, b, c中有两个大于零,一个小于零时,原式 =1;(4)当a, b,
5、 c中有两个小于零,一个大于零时,原式 =-1.-A-+-r:-+ -r14的所有可能值是:七,土.点评:此题主要考查了绝对值的性质,采用分类讨论思想是解答此题的关键.5、若 |x|=3 , |y|=2,且 |x - y|=y x,求 x+y 的值.考点:非负数的性质:绝对值;绝对值。专题:分类讨论。分析:根据|x - y|=y - x,即可得到y牙,再根据|x|=3 , |y|=2即可确定x, y的值,从而求解.解答:解:因为|x - y|再,所以y-x用,y牙.由 |x|=3 , |y|=2 可知,xv 0,即 x= - 3.(1)当 y=2 时,x+y= - 1 ;(2)当 y= - 2
6、 时,x+y=- 5.所以x+y的值为-1或-5.点评:本题主要考查了绝对值的性质,若 x为,且|x|=a ,则x=虫,根据任何数的绝对值一定是非负数,正确确定x, y的大小关系,确定 x, y的值,是解决本题的关键.6、若 a, b, c 为整数,且 |a b| 19+|c a| 99=1,试计算 |c a|+|a b|+|b c| 的值.考点:绝对值。专题:探究型。分析:根据绝对值的定义和已知条件a, b, c为整数,且|a - b|19+|c- a|99=1确定出a、b、c的取值及相互关系,进而在分情况讨论的过程中确定|c - a|、|a - b|、|b - c| ,从而问题解决.解答:
7、解:a, b, c均为整数,则a- b, c-a也应为整数,且|a - b| 19, |c - a|99为两个非负整数,和为 1,所以只能是|a - b| 19=0且|c - a| 99=1,或 |a - b| 19=1 且 |c - a| 99=0.由 知 a- b=0 且|c a|=1 ,所以 a=b,于是 |b c|=|a c|=|c a|=1 ;由知|a b|=1 且 c a=0,所以 c=a,于是 |b c|=|b a|=|a b|=1 .无论 或 都有|b - c|=1且|a - b|+|c - a|=1 ,所以 |c a|+|a b|+|b c|=2 .点评:根据绝对值的定义和已
8、知条件确定出a、b、c的取值及关系是解决本题的关键,同时注意讨论过程的全面性.7、若|x - y+3|与|x+y - 1999|互为相反数,求耳包的值a1 - y考点:解二元一次方程组;非负数的性质:绝对值;代数式求值。专题:计算题。分析:先根据相反数的定义得到|x -y+3|与|x+y - 1999|的关系,再根据绝对值的性质列出关于x、y的方程组,求出x、y的值,再把x、y的值代入所求代数式进行计算即可.解答:解:依相反数的意义有|x - y+3|= - |x+y - 1999| .因为任何一个实数的绝对值是非负数,所以必有 |x - y+3|=0且|x+y - 1999|=0 .即由有x
9、-y=-3,由有x+y=1999.-得 2y=2002, y=1001 ,所以= = '-1 H.=-1000.k _ y k _ y -3x、y 的二点评:本题考查的是相反数的定义、非负数的性质及解二元一次方程组,能根据非负数的性质得到关于 元一次方程组是解答此题的关键.8、化简:|3x+1|+|2x T|.考点:绝对值。分析:本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.分xv-二,3三种情况讨论解答:解:分三种情况讨论如下:(1)当 xv 原式=(3x+1) (2x1) = 5x;Word范文原式=(3x+1) - (2x-1) =x+2;(3)当x寸,2原式
10、=(3x+1) + (2x- 1) =5x.综合起来有:点评:本题考查了绝对值的知识,属于基础题,解这类题目,可先求出使各个绝对值等于零的变数字母的值,即 先求出各个分界点,然后在数轴上标出这些分界点,这样就将数轴分成几个部分,根据变数字母的这些取值范围分类讨论化简,这种方法又称为零点分段法9、已知 y=|2x+6|+|x 1| - 4|x+1| ,求 y 的最大值.考点:绝对值。专题:分类讨论。分析:首先使用 零点分段法”将y化简,有三个分界点:-3, 1, -1.则x的范围即可分为 x<- 3, - 3aw-1,-1女虫,x四部分,即可确定绝对值内式子的符号,从而确定y的值.解答:解
11、:分析首先使用 零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.有三个分界点:-3, 1, -1.(1)当 x<- 3 时,y= - ( 2x+6) - (x-1) +4 (x+1) =x- 1 , 由于x<- 3,所以y=x - 1 <- 4, y的最大值是-4.(2)当-3虫w- 1时,y= (2x+6) - (x-1) +4 (x+1) =5x+11, 由于-3x<- 1,所以-44x+11由,y的最大值是 6.(3)当-1立4时,y= (2x+6) - ( x - 1) - 4 (x+1) = - 3x+3, 由于-1<
12、;x司,所以0W- 3x+3由,y的最大值是 6.(4)当x时,y= (2x+6) + (x- 1) - 4 (x+1) =- x+1 , 由于x*,所以1-x<0, y的最大值是0.综上可知,当x=-1时,y取得最大值为6.点评:本题主要考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.又x的分为正确进行分类是解决本题的关键.10、设 avbvcvd,求 |x a|+|x b|+|x c|+|x - d| 的最小值.考点:绝对值;数轴。专题:数形结合。分析:分析本题也可用 零点分段法”讨论计算,但比较麻烦.若能利用|x - a| , |x -
13、b| , |x - c| , |x - d|的几何意义来解题,将显得更加简捷便利.解答:解:设a, b, c, d, x在数轴上的对应点分别为A, B, C, D, X,则|x - a|表示线段AX之长,同理,|x -b| , |x - c| , |x -d|分别表示线段 BX, CX DX之长.现要求|x - a| , |x - b| , |x - c| , |x -d|之和的值最小,就 是要在数轴上找一点 X,使该点到A, B, C, D四点距离之和最小.因为a< bvcvd,所以A, B, C, D的排列应如图所示:工 与以匚 口所以当X在B, C之间时,距离和最小,这个最小值为
14、AD+BC 即(d - a) + ( c- b).点评:以上分别用两种不同的方法即几何方法和代数方法进行求解.通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.11、若2x+|4 - 5x|+|1 - 3x|+4的值恒为常数,求 x该满足的条件及此常数的值.考点:一元一次不等式组的应用。专题:计算题。分析:要使原式对任何数 x恒为常数,则去掉绝对值符号,化简合并时,必须使含x的项相加为零,即x的系数之和为零.故本题只有 2x - 5x+3x=0 一种情况.因此必须有|4 - 5x|=4 - 5x且|1 - 3x|=3x -1.让4- 5x用
15、,3x-1涮 列式计算即可求得 x该满足的条件,进而化简代数式即可.解答:解:x应满足的条件是:,如00解得Lx之35原式=2x+ (4 5x) + (3x 1) +4=7.点评:考查代数式的化简及一元一次不等式组的应用;判断出绝对值内的代数式的符号是解决本题的关键;用到 的知识点为:一个数的绝对值是非负数.12、x是什么实数时,下列等式成立:(1) | (x2) + (x4) |=|x -2|+|x - 4|;(2) | (7x+6) (3x-5) |= (7x+6) (3x-5).考点:含绝对值符号的一元一次方程。专题:计算题。分析:(1)根据等式的形式可判断出(x-2)及(x-4)同号,
16、由此可得出答案;(2)等式的形式可判断出(x-2)及(x-4)同号,由此可得出答案;解答:解:由题意得:(x-2)再,(x-4)双解得:xN;(x-2)磷,(x-4)箱,解得:x<2,故xN或x磴时成立;(2)由题意得:(7x+6) (3x-5)田, 解得:x<- ,或xX.73点评:本题考查含绝对值的一元一次方程,难度不大,解决此题的关键是掌握绝对值的性质.13、化简下列各式:mi(3) |x+5|+|x - 7|+|x+10| .考点:绝对值。专题:计算题;分类讨论。分析:此题要分类讨论,在x取不同值的情况下,去掉绝对值后结果不同.特别注意(1)中dex不能取0,题(2)要讨论
17、全面.解答:解:(1)当 x>0 时,12LLLL=0;当 x<0 时,卜"=-2;(2)当 x 小时,|x+5|+|x - 7|+|x+10|=3x+8 ;当-5a耳 时,|x+5|+|x - 7|+|x+10|=x+5 (x-7) +x+10=x+22;当一10 寂 w 5 时,|x+5|+|x - 7|+|x+10|= (x+5) (x 7) +x+10=12 x;当 x <- 10 时,|x+5|+|x - 7|+|x+10|= - 3x - 8.点评:本题主要考查了绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;绝对值是非负数用;0的绝对值还是零.
18、14、若 a+b<0,化简 |a+b - 1| - |3 - a - b| .考点:绝对值。专题:计算题。分析:根据a+bv0,即可确定a+b - 1与3-a- b的符号,根据一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即可去掉式子中的绝对值符号,即可化简求值.解答:解:= a+b< 0.a+b- K0, 3- a - b=3- (a+b) >3 .原式=1-a-b- (3-a-b) =1 - a - b - 3+a+b=- 2故答案是-2.点评:本题主要考查了绝对值的化简,正确确定绝对值里边的式子的符号是解题的关键.15、已知 y=|x+2|+|
19、x 1| 一 |3x 一 6| ,求 y 的最大值5 .考点:一元一次不等式的应用。专题:分类讨论。分析:先分点,然后根据情况分类讨论,从而得出最大值.解答:解:分点,-2, 1, 2当 xw 2, y= - x - 2 - x+1+3x - 6=x - 7, y 最大时,x= - 2, y= - 9-2vxW, y=x+2 - x+1+3x - 6=3x - 3, y 最大时,x=1, y=01vxv2, y=x+2+x - 1+3x - 6=5x - 5, y 无最大值x 凄,y=x+2+x - 1 - 3x+6= - x+7 , y 最大时,x=2 , y=5所以,y最大值为5故答案为5
20、.点评:本题考查了分点和分类讨论的思想和绝对值符号的除符号.找出 x的分点,分类讨论 x的取值范围是解题 的关键.16、设T=|x-p|+|x - 15|+|x - p- 15| ,其中0vpv15,试求当p»得5时,T的最小值是多少?考点:绝对值;数轴。专题:计算题。分析:由题意得:从pa得5得知,x-p涮x - 15硝x - p - 150,然后去绝对值即可得出答案.解答:解:由题意得:从 p虫45得知,x-p用x-15磷x-p-154,T=|x - p|+|x - 15|+|x - p- 15|= (x p) + ( 15 x) + (15+p x) =30 x,又x最大是15
21、,则上式最小是 30- 15=15.点评:本题考查了绝对值和数轴的知识,属于基础题,根据题给条件去掉式中的绝对值是关键.17、已知avb,求|x - a|+|x - b|的最小值.考点:绝对值。分析:根据:|x - a|表示数轴上一点到 a的距离,|x - a|+|x - b|即数轴上一点到 a与b的两点的距离的和,据此 即可求解.解答:解:.|x - a|+|x - b|即数轴上一点到 a与b的两点的距离的和,当点在a与b之间时,式子的值最小,最小值是b- a.点评:本题主要考查了绝对值的意义,正确理解:|x - a|表示数轴上一点到 a的距离是解决本题的关键.18、不相等的有理数 a, b
22、, c在数轴上的对应点分别为A, B, C,如果|a - b|+|b - c|=|a - c| ,那么B点应为()(1)在A, C点的右边; (2)在A, C点的左边; (3)在A, C点之间;(4)以上三种情况都有可能.考点:绝对值。分析:根据|a - b|表示数轴上表示 a与表示b的两点之间的距离,根据三个点之间距离的关系即可求解.解答:解:|a - b|+|b - c|=|a - c|表示:数轴上表示 a, b, c三个数的点距离之间的关系,a至U b的距离,即b到a的距离与到c的距离的和等于 a与c之间的距离,因而点 B在A, C之间.,选(3).点评:本题主要考查了绝对值的意义,|a
23、 - b|表示数轴上表示 a与表示b的两点之间的距离, 是解决本题的关键.答案与评分标准、解答题(共16小题,满分150分)I tx+T1、解方程工-lx -巳考点:解一元一次方程。1可得出答案.专题:计算题。分析:先去小括号,再去中括号,然后移项合并、化系数为解答:解:去小括号得:1 -x- lx+l-3=x+,2Z 64 644去中括号得:ix+Lx+Jj-4x+三2工6 24项 44移项合并得:至秆-更, 83&系数化为1得:x=-士.9点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.2、已知下面两个方程3
24、(x+2) =5x,4x - 3 (a - x) =6x - 7 (a - x) 有相同的解,试求 a的值.考点:同解方程。分析:本题解题思路是从方程 中求出x的值,代入方程,求出a的值.解答:解:由方程 可求得3x - 5x= - 6,所以x=3.由已知,x=3也是方程的解,根据方程解的定义,把 x=3代入方程 时,应有:4M3 (a-3) =6X3-7 (a3),解得:a=4.2点评:本题考查同解方程的知识,难度不大,关键是根据求出方程 的解.3、已知方程 2 (x+1) =3 (x- 1)的解为 a+2,求方程 22 (x+3) - 3 (x-a) =3a 的解. 考点:一元一次方程的解
25、。专题:方程思想。分析:解一元一次方程 2 (x+1) =3 (x-1)求得方程的解,即可求得a的值,代入方程22 (x+3) - 3 (x- a) =3a , 然后解方程即可求得方程的解.解答:解:由方程2 (x+1) =3 (x-1)解得x=5.由题设知a+2=5,所以a=3.于是有22 (x+3) - 3 (x-3) =3 >3, 即-2x=- 21,x=10 .2点评:本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.4、解关于 x的方程(mx- n) (m+n) =0.考点:解一元一次方程。专题:计算题;分类讨论。分析:先将方程整理为 m
26、 (m+n) x=n (m+n),然后分情况讨论, m+n=0且nW,m+n=0且m=0,m+rp0,然后 可分别解得x的值.解答:解:分析这个方程中未知数是x, mi n是可以取不同实数值的常数,因此需要讨论m n取不同值时,方程解的情况.把原方程化为: Rx+mnx- mn- n2=0,整理得: m (m+/ x=n (m+n).m+rW且mF0时,方程的唯一解为 x=;IT 当m+n,且m=0时,方程无解; 当m+n=0时,方程的解为一切实数.点评:本题考查解一元一次方程的知识,有一定难度,解这类方程时,需要从方程有唯一解、无解、无数多个解三种情况进行讨论.5、解方程,(a+x b) (
27、ab x) = (a2 x) (b2+x) - a2b2.考点:解一元一次方程。分析:本题将方程中的括号去掉后产生x2项,但整理化简后,可以消去 x:也就是说,原方程实际上仍是一个一元一次方程.解答:解:将原方程整理化简得(a - b) 2- x2=a2b2+a2x - b2x- x2- a2b2,awb时)方程有唯一解;即(a2 - b2) x= (a - b) (1)当a2-b2加时,即x=(a_ b) 2 a2 - b2x=(2)当 a2b2=0 时,即a=b 或 a=- b 时.若ab为,即a而,即2= b时,方程无解;若a- b=0,即a=b,方程有无数多个解.点评:本题虽表面上有x
28、2项,但实际考查解一元一次方程的解法,有一定的难度,注意分类讨论思想的应用.6、已知(m2- 1) x2 - ( m+。x+8=0是关于x的一元一次方程,求代数式199 (m+x) (x-2倒+m的值.考点:一元一次方程的定义;代数式求值。专题:计算题。分析:根据一元一次方程的定义:只含有一个未知数(元),并且未知数的指数是1 (次)的方程叫做一元一次方程.它的一般形式是ax+b=0 (a, b是常数且a加).列出等式,求出 m的值,代入即可.解答:解::(6-1) x2- ( m+。x+8=0是关于x的一元一次方程,2rm - 1=0,即 m=d .(1)当 m=1 时,方程变为-2x+8=
29、0,因此 x=4,.原式=199 (1+4) (4-2M) +1=1991;(2)当m=- 1时,原方程无解.所以所求代数式的值为 1991.点评:本题主要考查了一元一次方程的一般形式,未知数的指数是1, 一次项系数不是 0,特别容易忽视的一点就是一次项系数不是 0的条件.这是这类题目考查的重点.7、已知关于x的方程a (2x- 1) =3x-2无解,试求a的值.考点:一元一次方程的解。专题:计算题。分析:先将方程变形为ax=b的形式,再根据一元一次方程无解的情况:a=0, b加,求得方程a (2x-1) =3x-2中a的值.解答:解:将原方程变形为2ax a=3x 2, 即(2a - 3)
30、x=a - 2.由已知该方程无解,所以r2a-3=0白-好0解得a=士故a的值为刍.2点评:本题考查了一元一次方程解的情况.一元一次方程的标准形式为ax=b,它的解有三种情况: 当a用,b为时,方程有唯一一个解;当a=0, b为时,方程无解;当a=0, b=0时,方程有无数个解.8、k为何正数时,方程 k2x - k2=2kx - 5k的解是正数?考点:一元二次方程的解;一元二次方程的定义。专题:方程思想。分析:对方程ax=b,当a为时,方程有唯一解 x=上,此解的正负由a, b的取值范围确定:(1)当ab>0时,方程的解是正数,(2)当abv时,方程的解是负数.解答:解:按未知数x整理
31、方程得(k2 2k) x=k2- 5k.要使方程的解为正数,需要(k2- 2k) (k2- 5k) >0.看不等式的左端(k2- 2k) (k2- 5k) =k2 (k - 2) (k-5).因为k2耳,所以只要k>5或kv 2时上式大于零,所以当 k<2或k>5时,原方程的解是正数,所以k>5或0vkv2即为所求.点评:本题考查的是方程的解,根据方程的解的概念,运用不等式的性质,确定k的取值范围.9、若 abc=1,解方程-一-'- +- 12 +-=1ab+a+1 bc-hb+1 ca+c+1考点:解一元一次方程。分析:将方程中的1用abc代替,然后化
32、简整理可约去abc+bc+b,进而能得出答案.解答:解:因为abc=1,所以原方程可变形为:ab+a+abc bc+b+二 ac+c+1化简整理为:)D '+=1,bc+b+l ac+c+l2 (b+1)又 20H _1 1bc4b+abc ac+c+1化简整理为:)"一一二 (aEc+D2K (b+abc+bc) =1 ,acb-Fbc+b. x=2为原方程的解.2点评:本题考查解一元一次方程的知识,注意像这种带有附加条件的方程,求解时恰当地利用附加条件可使方程的求解过程大大简化.10、若a, b, c是正数,解方程考点:解一元一次方程。专题:计算题。a、b、c的条件进行推
33、理分析:根据题意,首先将方程式进行化简,去分母、移项、合并同类项,再根据题干所给 讨论解决.解答:解:解法1、原方程两边乘以 abc,得到方程: ab(x ab) +bc (xb c) +ac(x ca) =3abc, 移项、合并同类项得:abx - ( a+b+c) +bcx - ( a+b+c) +acx - (a+b+c) =0 , 因此有:x - (a+b+c) (ab+bc+ac) =0, 因为 a>0, b>0, c> 0, 所以 ab+bc+ac用, 所以 x - ( a+b+c) =0, 即x=a+b+c为原方程的解;解法2、将原方程右边的3移到左边变为-3,
34、 再拆为三个并注意到: 其余两项做类似处理,设 m=a+b+G则原方程变形为: 富芯一皿二q,c a b 1所以:(x-m)(工)=0, c a b|,. a>0, b>0, c>0, 二J咻 cabx m=0,即:x - ( a+b+c) =0,所以x=a+b+c为原方程的解.点评:本题主要考查了解一元一次方程,需要熟悉解一元一次方程的步骤,同时需要注意观察,认真推敲所给条件,巧妙变形,从而产生简单优美解法.+x=11、设n为自然数,x表示不超过x的最大整数,解方程:x+2x+3x+4x+考点:取整函数。专题:计算题。分析:要解此方程,必须先去掉 口,根据x是整数,2x ,
35、 3x , nx都是整数,所以x必是整数,即可求解.解答:解:由于n是自然数,所以n与(n+1)2 7 , 1 2中必有一个偶数,因此 .一是整数.因为x是整数,2x , 3x , nx都是整数,所以 x必是整数.根据分析,x必为整数,即x=x,所以原方程化为x+2x+3x+4x+ -+nx=合并同类项得(1+2+3+ +n) x=故有n Cn+1) n? (n+1 ) 2x=-22所以x=n (n+1)为原方程的解.点评:本题主要考查了取整函数的计算,去掉 口,转化为一般的式子是解决本题的关键.12、已知关于x的方程反工-近旦x+1式且a为某些自然数时,方程的解为自然数,试求自然数a的最小值
36、.25考点:一元二次方程的整数根与有理根。专题:计算题。分析:用x表示出a,找到x的最小的自然数解,也就求得了a的值,进而求得最小值.解答:解:由原方程可解得 a=x - 142, iq.a为自然数,x> 142,10x>157 工9.a最小, x 应取 x=160.a=2.所以满足题设的自然数 a的最小值为2.点评:考查二元方程的最小系数的自然数值;用一个字母表示出另一个字母是解决本题的突破点.13、解下列方程:(1)(2)(3)。,9 k- 5 0.02x+。,032.0.52 -0,03考点:解一兀一次方程。(2)按照去分母、去括号、移项的步骤计算;(3)专题:计算题。分析:(1)先把分母化为整数,再去分母、去括号、移项即可;先去小括号、再去中括号、最后去大括号、移项即可.解答:解:(1)分母化为整数得:独咀三二月&±2,52 | 3去分母得:6 (4x+9) - 15 (x-5) =10 (2x+3),去括号得:24x+54 - 15x+75=20x+30 ,移项彳导:11x=99, 同除以11得:x=9.1-4(1 一 ¥)(2)去分母得:1 - -=4,3再去分母得:3 - 1 -(1-x) =12,去括号得:2-J+-x=12,移项得:二x=1021.21同除以茅:x=21.(3)去小括号得:力工T6+4=1,再去中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房屋赠与合同:甲方无偿赠与乙方房屋3篇
- 2024年度墙纸品牌形象授权合同3篇
- 二零二四年度教育设备采购与捐赠合同
- 2024年度艺人经纪合同:歌手全面代理合作协议2篇
- 2024年度美容院物流配送服务合同
- 二零二四年度供应合同标的质量与交付
- 二零二四年影视制作与广告拍摄合同
- 2024年度品牌推广与宣传活动合同
- 二零二四年度铝矿勘探与开采融资合同
- 2024版光伏设备采购与贷款协议
- GB/T 70.1-2008内六角圆柱头螺钉
- GB/T 16475-2008变形铝及铝合金状态代号
- 系统解剖学-脑神经
- 细胞通过分化产生不同类型的细胞【知识精讲+备课精研】 高一生物 课件(浙科版2019必修1)
- 医用弹力袜的使用课件
- 传播学概论课件新版
- 消防水池拉森钢板桩支护专项施工方案
- 第1章女性生殖系统解剖及生理课件
- 《脑小血管病》课件
- 产品介绍VA产品功能介绍
- 浙江省地方执法证考试参考题库大全-4(案例分析题部分)
评论
0/150
提交评论