2022年可降解聚合物在骨组织工程中的应用进展_第1页
2022年可降解聚合物在骨组织工程中的应用进展_第2页
2022年可降解聚合物在骨组织工程中的应用进展_第3页
2022年可降解聚合物在骨组织工程中的应用进展_第4页
2022年可降解聚合物在骨组织工程中的应用进展_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关键词:可降解聚合物骨组织工程细胞外基质材料 摘要目的探讨理想的骨组织工程细胞外基质材料的选择和制备。方法广泛查阅了近期有关可降解聚合物用作成骨细胞培养支架的文献,总结了各种可降解聚合物在骨组织工程研究中作为细胞外基质材料的优缺点。结果理想的骨组织工程细胞外基质材料应由无机类材料、人工合成聚合物类材料和天然聚合物类材料组成,并含有最正确的生长因子缓释系统的多孔三维立体泡沫。结论复合型细胞外基质材料的研制是骨组织工程研究中十分重要而迫切的任务。 器官和组织中的细胞,其行为不仅取决于细胞内在的基因序列,还在很大程度上受到外界环境因素的影响,包括细胞与细胞外基质(extracellularmatri

2、x,ECM)的相互作用。ECM不仅为细胞生长提供支持和保护,更重要的是细胞与ECM的相互作用调节细胞的形态发生过程,影响细胞生存、迁移、增殖和功能代谢。因此,在组织工程研究中挑选和制备利于种子细胞的粘附、增殖和分化的细胞外基质材料是十分重要和迫切的任务。 理想的骨组织工程细胞外基质材料的要求有1、2:良好的生物相容性。除满足生物材料的一般要求,如无毒、不致畸性等外,还应利于种子细胞粘附、增殖,降解产物对细胞无毒害作用,不引起炎症反响,甚至利于细胞生长和分化。良好的生物降解性。基质材料在完成支架作用后应能降解,降解率应与组织细胞生长率相适应,降解时间应能根据组织生长特性作人为调控。具有三维立体多

3、孔构造。基质材料可加工成三维立体构造,孔隙率最好达90%以上,具有较高的面积体积比。这种构造可提供宽大的外表积和空间,利于细胞粘附生长,细胞外基质沉积,营养和氧气进入,代谢产物排出,也有利于血管和神经长入。可塑性和一定的机械强度。基质材料具有良好的可塑性,可预先制作成一定形状。并具有一定的机械强度,为新生组织提供支撑,并保持一定时间直至新生组织具有自身生物力学特性。良好的材料-细胞界面。材料应能提供良好的细胞界面,利于细胞粘附、增殖,更重要的是能激活细胞特异基因表达,维持细胞正常表型表达。 目前,可降解聚合物用作骨组织工程细胞外基质材料主要有两类,一类是天然聚合物,如胶原蛋白、纤维蛋白等;另一

4、类为人工合成聚合物,如聚酯类、聚偶磷氮等。天然材料生物相容性好,具有细胞识别信号(如某些氨基酸序列等),利于细胞粘附、增殖和分化,但也存在许多缺点,如大规模生产的限制、不同批号制成品的差异、材料本身因素控制的困难(如机械强度、降解速度等)。人工合成聚合物那么防止了上述困难,材料的微构造、大体形态、机械性能、降解时间等都能预先设计和调控,最后降解完全,防止了长期异物反响的危险。但人工合成材料最大的缺点是缺乏细胞识别信号,与细胞间缺乏生物性相互作用。并且目前人工合成聚合物要到达理想的骨组织工程细胞外基质材料的要求在制作中还存在许多差距。 1人工合成可降解聚合物 目前,可用作成骨细胞种植基质材料的聚

5、合物主要有:聚乳酸(polylacticacid,PLA)、聚乙醇酸(polyglycolicacid,PGA)、聚偶磷氮(polyphophazenes)、聚原酸酯(polyorthoester,POE)、聚己内酯(polycaprolactone,PCL)、聚酯尿烷(polyesterurethane)、聚酸酐亚胺共聚物poly(anhydride-co-imides)、聚羟丁酯(polyhydroxyrate,PHB)及其共聚物等。下面介绍几种生物可降解合成聚合物在骨组织工程中的应用情况。 !-empirenews.page-1.1聚乳酸、聚乙醇酸及其共聚物 PLA、PGA均属-聚酯类。

6、PLA有三种异构体(PDLA、PLLA、PDLLA),在体内降解生成乳酸,是糖的代谢产物;PGA在体内降解为羟基乙酸,易于参加体内代谢。聚合物中酯键易于水解,属非酶性水解。共聚物的降解时间可通过改变两者的比例来调控,约为几周到几年。这类聚合物属热塑性塑料,可通过模塑、挤压、溶剂浇铸等技术加工成各种构造形状。因其降解产物无毒及良好的生物相容性,PLA、PGA已被美国食品与药品管理局(FDA)批准广泛用作医用缝线、暂时性支架和药物控释载体。Vacanti等3首先将PGA、PLA用作软骨细胞体外培养基质材料,通过组织工程方法获得新生软骨成功。此后,PLA、PGA及其共聚物被广泛用于组织工程各类组织细

7、胞外的基质材料,如软骨、骨、肌腱、小肠、气管、心瓣膜等,取得了初步成功。 PLA、PGA及其共聚物在组织工程中应用的主要构造形式有纤维支架、多孔泡沫以及管状构造等。这些构造形式在骨组织工程实验研究中都显示出良好的成骨效应。 Breitbart等4将PGA无纺纤维支架制成直径15mm、厚2mm的圆盘状,复合体外培养的兔骨膜成骨细胞,植入修复兔颅骨直径为15mm的全层骨缺损。4周后缺损区有骨岛形成,12周后缺损区大量骨生成,完全修复骨缺损。Ishaug等5将大鼠骨髓基质细胞种植于PLGA泡沫,再将复合物移植于大鼠肠系膜观察其成骨能力。组织学检查发现7天后复合物中即可见矿化骨组织,7周后,孔径为15

8、0300m的泡沫复合物中矿化骨组织厚度达(370160)m。另外,PLA、PGA及其共聚物亦被制成管状构造用于小肠、尿道等管状器官的组织工程细胞外基质材料。 尽管目前PLA、PGA及其共聚物是应用最为广泛的组织工程细胞外基质材料,但在应用过程中发现不少缺点。下面就其缺乏之处和改善方法作一简单介绍。 亲水性差,细胞吸附力较弱以PLA包埋的PGA无纺纤维支架亲水性差、细胞吸附力弱的问题一直困扰着组织工程学家,人们一直在寻找解决这一问题的方法。Mikos等6通过乙醇和水两步预湿的方法,有效地对支架进展预湿,增强了亲水性,促进了细胞在支架外表均匀分布,并将有利于体内移植后纤维血管的长入。刘彦春等7选择

9、卵磷脂和多聚赖氨酸共同包埋PGA+PLA,也显著提高了支架的亲水性和细胞吸附力。Hubble8指出,聚乙醇是一种水溶性、非离子聚合物,可减少生物材料对蛋白的吸附作用。将聚乙醇与聚酯形成共聚物,可提高材料的亲水性,同时也加速了聚合物的降解。 引起无菌性炎症临床上PLA、PGA的应用过程中发现患者出现非特异性无菌性炎症反响率较高,约为8%9。Lam等10的实验中提出中分子量降解产物可增加非感染炎性反响,PLA平均分子量低于20ku(1Da=0.9921u)时,无菌性炎症发生率较高,使用高分子量PLA可延迟但不能消除这一反响。 目前认为出现无菌性炎症的原因可能与聚合物降解过程中酸性降解产物引起局部p

10、H值下降有关11。因此,有学者将碱性物质,如碳酸钙、碳酸氢钠、钙羟基磷灰石引入聚合物中,可代偿聚合物降解引起的pH值下降,有助于防止无菌性炎症的发生12。另外,将聚酯-聚乙二醇共聚物作为前体物质合成水凝胶,这种水凝胶中聚酯在聚己二醇末端以低聚体形式存在,含量较低,在体内降解过程中不会引起炎症反响8。当然,无菌性炎症的根本解决方法是开发一种降解不释放或缓慢释放酸性降解产物的新型聚合物。 !-empirenews.page-机械强度缺乏单纯编织成的PGA无纺纤维支架不具备一定的抗压强度,通过聚合物包埋或热处理虽然可改善其机械强度,但仍然存在抗压强度缺乏的缺陷。Devin等13将羟基磷灰石(hydr

11、oxyapatile,HA)与5050pLGA共聚物组成多孔复合基质材料,实验说明复合材料抗压弹性模量随HA成份增加而增加。聚合物降解后,含50%HA的复合材料模量为1459MPa,而不含HA的基质材料模量为293MPa。同时,HA的引入也延缓了聚合物的降解时间。含10%HA的复合材料6周内可完全降解,而含50%HA的复合材料那么相对稳定。因此,将钙磷陶瓷引入PLGA共聚物,可改善PLGA的机械性能差、降1234下一页 解速度快、骨结合力弱等缺点。 其他PLA、PGA及其共聚物还存在其他一些问题,如聚合物中残留的有机溶剂的细胞毒作用,以及可能引起的纤维化及与周围组织的免疫反响等问题14。 1.

12、2聚丁酸 聚丁酸(polyhydroxybutyrate,PHB)最早由Lemoigne(1964)从细菌中别离出来,随后在诸多细菌,如巨杆菌属、红螺菌属等的胞浆颗粒中均发现有这种聚合物。PHB是由3-羟基丁酸通过酯键链接而成。PHB最早被美国农业食品组织用作动物饲料,后来人们发现PHB具有压电效应,十分适合作为骨折固定材料,但由于单纯PHB易碎、热不稳定、降解时间长、可塑性和机械性能差等缺点限制了它的广泛应用。 将聚羟戊酸(polyhydroxyvalerate,PHV)引入PHB主链,形成PHBV共聚物,由PHB和024%PHV组成,可改善PHB的上述缺点。PHBV可在较低的温度下加工塑形

13、,防止了PHB的热降解问题。PHBV通过微生物酶解和水解作用而发生降解,水解作用主要与环境酸碱度有关。Rivard等15用PHB/9%HV组成的PHBV共聚物制成三维立体泡沫用作软骨细胞、成骨细胞培养支架,细胞均匀分散在整个聚合物基质中,呈良好的粘附、增殖状态,并在培养21天时细胞生长达最大密度。但PHBV共聚物还存在机械性能差、骨结合力弱等问题。 1.3聚偶磷氮 Allcock最早通过聚二氯化偶磷氮与氨基酸酯反响制得含氨基酸酯取代基的聚有机偶磷氮poly(organo)phosphazenes。这种聚有机偶磷氮具有良好的生物相容性,降解产物无毒,逐渐被用作药物控释载体。聚有机偶磷氮降解是通过

14、氨基酸酯的水解,生成羧酸,再催化主链的裂解。因此通过调节水解不稳定性的氨基酸酯取代基与主链的化学组成可以实现聚合物降解速度的调控。其完全水解产物对人体根本无毒害作用。 Laurencin等16将聚有机偶磷氮用作成骨细胞培养载体,发现取代基为乙基甘氨酸酯的聚有机偶磷氮,不仅有利于细胞的粘附生长,而且可提高聚合物的降解率。在此根底上,通过盐析技术制成具有三维立体构造的聚甲基苯氧基乙基甘氨酸偶磷氮,平均孔径165m,分布均匀,孔隙之间相互交通。将成骨细胞种植于其上,培养第1天成骨细胞就从材料外表长入孔隙内,并在21天的培养期中细胞以恒定速度增殖,呈现出良好的生物相容性。但其水解产物对人体可能产生一定

15、毒害作用。 1.4聚酸酐 !-empirenews.page-聚酸酐是由羧酸聚合而成。性质活泼,遇水极不稳定。脂肪簇聚酸酐在几天内完全降解,而芳香簇聚酸酐那么需几年时间才能降解完全。综合两者的特点,通过调整主链中两种单体的组成比例来调控材料的性能和降解速度。毒理学评价说明,聚酸酐的体内生物相容性非常理想,被广泛用于药物控释体系。 Attawia等17、18将酸酐和亚胺聚合成共聚物用作成骨细胞培养载体。其中亚胺成份由苯均四酸亚胺丙氨酸或偏苯三酸亚胺甘氨酸组成。酸酐成份由皮脂酸或1,6-二羧基苯氧乙烷组成。将共聚物制成圆盘状,与成骨细胞株MC3T3-E1共同培养,发现24小时内,酸酐单体在1,6-

16、二羧基苯氧己烷的共聚物培养体系中,细胞粘附良好,形态正常。而单体在皮脂酸的共聚物培养体系中,由于聚合物外表的快速降解,导致细胞不粘附。在此根底上,进一步研究了在共聚物降解产物苯均四酸亚胺丙氨酸和苯均四酸存在的情况下,成骨细胞仍能维持特征性的多角形,在21天的培养期内维持分泌骨钙素的成骨细胞表型。这种亚胺酸酐共聚物对成骨细胞有良好的相容性,不影响表型表达,但其中的亚胺成份可能对细胞生长有影响。 2天然高分子聚合物 2.1胶原 胶原是动物体内含量最丰富的蛋白,约占人体蛋白总量的30%以上,其中以ECM中胶原蛋白含量最高。胶原蛋白在体内以胶原纤维的形式存在,其根本组成单位是原胶原分子,原胶原蛋白分子

17、经多级聚合形成胶原纤维。胶原纤维与细胞外基质中其他成份形成构造与功能的复合体。胶原主要分五类,骨组织中为型胶原。胶原不仅为细胞提供支持保护作用,而且与细胞的粘附、生长、表型表达均有密切关系。 型胶原通过成骨细胞外表特异性受体1整合素亚单位与成骨细胞严密结合。Basle等19研究发现成骨细胞系Saos-2在异种骨基质中沿胶原纤维束粘附延展,用免疫组织化学技术观察到胶原纤维外表通过1整合素亚单位与细胞外外表严密结合,当抗1整合素亚单位抗体存在时,细胞堆积,无定向延展。另有研究说明型胶原与成骨细胞复合可提高成骨细胞的成骨能力,刺激多潜能间充质细胞向成骨细胞方向转化,并促进细胞表达碱性磷酸酶(alka

18、linephosphatase,ALP)、型胶原及骨桥蛋白(osteopontin,OPN)20。Green等21研究证实型胶原是通过增强成骨细胞的蛋白激酶C活性,增强成骨细胞合成蛋白能力,同时该酶还可活化Na+/H+交换系统,提高细胞质中的pH值,促进成骨细胞增殖。 由于型胶原能促进成骨细胞粘附、增殖和分化,增强其成骨能力。Mizuno等22将型胶原用作骨髓基质细胞的培养基质,发现骨髓基质细胞可定向分化为成骨细胞,最终形成含骨髓成份的新生骨组织,成骨过程中无软骨生成,而、型胶原上那么未见新骨生成。 型胶原由于含特定的细胞识别信号(如某些氨基酸序列),利于成骨细胞粘附、增殖和分化,但其最大的缺

19、点是缺乏一定的机械强度,难以单独用作成骨细胞培养基质材料,可作为良好的材料包埋和添加剂。另外,还存在生理学性质不稳定和外来胶原引起的免疫反响等问题。 2.2纤维蛋白 纤维蛋白单体在凝血酶作用下可聚合成立体网状构造的纤维蛋白凝胶。聚合后的纤维蛋白凝胶可通过释放转化因子和血小板衍生生长因子等来促进细胞粘附、增殖并分泌基质,具有良好的生物相容性。另外,纤维蛋白凝胶可塑性强,通过降低凝血酶浓度的方法可延缓纤维蛋白聚合过程,为凝胶的塑形提供充分的时间。这种纤维蛋白凝胶来源于自身血液,防止了免疫原性问题,是较理想的细胞外基质材料。Sims等14首次报道了用纤维蛋白凝胶复合软骨细胞植入无胸腺小鼠皮下,12周

20、后新生软骨组织为透明软骨,氨基葡聚糖与软骨湿重比接近正常软骨。 !-empirenews.page-但是纤维蛋白凝胶也存在天然材料的共同缺点,如缺乏机械强度、大量获取困难、降解时间难以控制等,故也难以单独作为组织工程中成骨细胞种植基质材料。 2.3甲壳素及其衍生物 甲壳素,亦称甲壳质、几丁质,是自然界中仅次于纤维素的天然多糖,广泛存在于昆虫、甲壳类动物外壳及真菌细胞壁中。经脱乙酰化反响变成甲壳胺,即壳聚糖。甲壳素一般不溶于水、碱和常规有机溶剂中。只溶于盐酸等无机酸及甲醇、乙醇等。高度脱乙酰化甲壳胺可溶于水。甲壳胺分子中有许多胺基和羟基,容易进展化学修饰和改性。这类天然多糖具有明显碱性、良好的生

21、物相容性和生物可降解性。壳聚糖在体内溶菌酶、甲壳酶的作用下水解成低聚糖。由于壳聚糖的体内降解属于酶解作用,故难于对它的降解速度进展人为调控。降解产物为对人体无毒的N-乙酰氨基葡萄糖和氨基葡萄糖。降解过程中产生的低分子量甲壳素(胺)或其寡聚糖在体内不积累,无免疫原性。 Klokkevold等23研究了壳聚糖对体外成骨细胞分化和骨形成的影响。他们取胎鼠颅盖骨间充质细胞按3.5105个/ml的细胞浓度种植于培养皿中,参加200ml浓度为2mg/ml的壳聚糖乙酸溶液共同培养14天,发现其成骨细胞克隆形成率为(6.21.2)个/皿,明显高于未加壳聚糖的对照组颗粒形成率(3.60.6)个/培养皿,新生骨组

22、织的平均面积亦明显高于对照组。使用结果说明,壳聚糖具有促进前成骨细胞分化,加速骨形成的作用。倪斌等24用壳聚糖膜包绕骨缺上一页1234下一页 损断端,认为它对骨膜下骨痂的生长能起导向作用。 壳聚糖的生物相容性一般认为是良好的,但这些评价大都是将壳聚糖制成膜材料、线材料和药物载体的研究观察到的。当材料的几何形状变化时,通过蛋白质和细胞在其外表触发反响,可能损害与它接触的细胞和组织。张建湘等25发现在壳聚糖钉周围的炎症反响较明显,表现在钉周围始终有以淋巴细胞、中性粒细胞和异物巨噬细胞为主的炎症反响存在,以及组织学上偶尔见到小脓肿形成。一般认为中性粒细胞和小脓肿是非特异的异物排斥反响,而异物巨噬细胞

23、是可降解材料组织反响的免疫原性所致。壳聚糖钉周围的明 显炎症反响也可能与正电荷密度增高有关,因此有人认为壳聚糖不适合作为体内埋植材料。 2.4藻酸盐 藻酸盐是从海藻中别离出的一类多糖,是由D-mannuronate和L-guluronate组成的共聚物,在二价离子如钙离子存在时可通过离子交联作用形成开放晶格的水凝胶。藻酸钙水凝胶可塑性好,可预先制成各种形状。其力学强度与钙浓度和藻酸盐浓度均有关。在钙浓度高达500mmol/L或藻酸盐浓度达4%时,对生物活性物质的渗透扩散仍无阻碍作用。藻酸钙通过酶解作用分解,产物对人体无毒害作用。因此,藻酸盐被用作伤口覆盖材料、药物载体和细胞培养载体等。 !-e

24、mpirenews.page-Paige等26采用藻酸钙水凝胶复合软骨细胞移植入小鼠皮下,产生新生软骨获得成功。这种藻酸钙水凝胶为细胞提供三维生长空间,与PLA、PGA等聚合物相比,藻酸钙水凝胶具有更好的亲水性,营养物质易于渗透等优点。但藻酸钙仍存在体内难降解、组成成份不稳定、不同成品纯度不一等缺乏,且植入体内后,随着钙离子的扩散丧失,藻酸钙难以维持其水凝胶样构造。 3骨组织工程细胞外基质材料的开展方向 3.1增强材料对成骨细胞的粘附力 细胞与材料的相互作用是组织工程研究的主要领域,其中细胞与材料的粘附是根底,细胞必须与材料发生适当的粘附,才能进展迁移、分化和增殖27。因此,新材料的开发和应用

25、必须考虑是否有利于细胞粘附这一重要问题。 正常情况下,细胞与ECM的粘附主要通过特异性受体-整合素(Integrin)与ECM特异配体位点结合。Integrin是由、两个亚基组成的跨膜受体,有14个亚基和8个亚基。成骨细胞表达1、2、3、4、5、v、6、1、3等亚基。51为纤维连接蛋白(fibronectin,FN)受体,识别FN的精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp,RGD)序列28;21为型胶原受体,识别型胶原的1()链的天冬氨酸-甘氨酸-谷氨酸-丙氨酸(Asp-Gly-Glu-Ala,DGEA)序列29。Integrin一方面介导细胞与ECM和细胞-细胞间的粘附;另一方面激活

26、信号传导通路,联系细胞外微环境与细胞内代谢活动,对细胞生长、代谢起重要作用。 因此,采取预衬或溶剂链接的方法,将FN、胶原或RGD、DGEA等促细胞粘附短肽引入基质材料的外表或整体,将促进细胞粘附、增强生长代谢。Garcia等30将FN预衬于生物活性玻璃外表,可显著增强其对成骨细胞的粘附力,并与FN的外表密度呈正相关,成骨细胞的粘附是由FN的RGD位点介导,用FN抗体或与FN竞争的短肽RGD可抑制成骨细胞的粘附。 但FN或胶原除粘附成骨细胞外,对其他多种细胞都有粘附力。骨组织工程用基质材料最好能对种子细胞具有特异性吸附作用,尽量减少非种子细胞的粘附。Dee等31发现,赖氨酸-精氨酸-丝氨酸-精氨酸组成的短肽(Lys-Arg-Ser-Arg)可选择性增强硫酸乙酰肝素介导的成骨细胞粘附机制,这种粘附作用不同于Integrin介导的细胞粘附机制,具有成骨细胞特异性粘附作用。用这种短肽包埋的基质材料可显著提高成骨细胞粘附率,减少内皮细胞、成纤维细胞的粘附。是一种良好的骨组织工程基质材料包埋剂。 对于多种组织组成的复杂器官的组织工程再造,细胞的特异性吸附那么更具有应用意义。在基质材料的不同空间引入不同的细胞粘附序列,引导不同组织细胞在特定位置生长,可望再造多组织复杂器官。 3.2通过材料给予细胞应力刺激

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论