版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙教版八下数学各章节知识点及重难点第一章 二次根式知识点一: 二次根式的概念二次根式的定义:形如(a0)的代数式叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2. 二次根式无意义的条件:因负数没有算术平方根,所以当a0时,没有意义。
2、知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质
3、文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的, ,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知
4、识点七: 最简二次根式:必须同时满足下列条件:被开方数中不含开方开的尽的因数或因式; 被开方数中不含分母; 分母中不含根式。满足这三个条件的二次根式称为最简二次根式。知识点八: 同类二次根式:化成最简二次根式后,被开方数相同的几个二次根式称为同类二次根式。知识点九: 二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面(2)二次根式的加减法:需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根
5、式)的系数相加减,被开方数不变。注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式二次根式的乘法:二次根式的除法: 注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式强调:二次根式具有双重非负性。(4)二次根式的混合运算: 先乘方
6、(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便二次根式运算结果应尽可能化简另外,根式的分数必须写成假分数或真分数,不能写成带分数例如不能写成(5)有理化因式:一般常见的互为有理化因式有如下几类: 与; 与;与; &
7、#160; 与说明:利用有理化因式的特点可以将分母有理化(6)分母有理化:分母有理化也称为有理化分母。就是将分母含有根号的代数式变成分母不含根号的代数式,这个过程叫做分母有理化。(1)形如: 或 (2)形如: 或 7.关于具有双重根号的二次根式。如:,二.重点和难点:重点:二次根式的运算。难点:1.混合运算以及应用。 2.二次根式的内移和外移。 3.二次根式的大小比较。【难点指导】1、如果是二次根式,则一定有;当时,必有;2、当时,表示的算术平方根,因此有;反过来,也可以将一个非负数写成的形式;3、表示的算术平方根,因此有,可以是任意实数;4、区别和的不同:中的可以取任意实数,中的只能是一个非
8、负数,否则无意义5、简化二次根式的被开方数,主要有两个途径:(1)因式的内移:因式内移时,若,则将负号留在根号外即:(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论即:6、二次根式的比较:(1)若,则有;(2)若,则有 说明:一般情况下,可将根号外的因式都移到根号里面去以后再比较大小考点题型:1分式概念(选择、填空)(34分)2利用分式性质进行约分、通分(选择、填空)(810分)3分式的运算(选择、填空、解答)4分式的化简、求值(选择、填空、解答)(3-10分)5二次根式的概念和性质(选择、填空)(4分)6二次根式的化简与求值(选择、填空、解答)(3-8分
9、) 第二章 一元二次方程 一、教材内容 1本单元教学的主要内容 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题 2本单元在教材中的地位与作用 一元二次方程是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程应该说,一元二次方程是本书的重点内容 二、教学重点 1一元二次方程及其它有关的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用实际问题建立一元二次方程的数学模型,并解决这个问题三、教学难点 1一元二次方程配方法、十字相乘法解题 2用公式法解一元二次方程时的讨论 3建立
10、一元二次方程实际问题的数学模型;方程解与实际问题解的区别四、教学关键 1分析实际问题如何建立一元二次方程的数学模型 2用配方法解一元二次方程的步骤 3解一元二次方程公式法的推导五、知识点:1. 定义:形如 的方程叫做一元二次方程,其中,a 叫做二次项系数,bx叫做一次项,b叫做一次项系数,c叫做常数项。例:若方程是关于x的一元二次方程,则( )A Bm=2 Cm= 2 D2.一元二次方程的解法:(1)直接开平方法;(2)因式分解分(提公因式法、乘法公式法、十字相乘法);(3)配方法;(4)求根公式法;(5)换元法。例:按要求解方程(1)用配方法解方程:x2 4x+1=0 (2)用公式法解方程:
11、3x2+5(2x+1)=03.一元二次方程根的判别式:= .>0,方程有两个不相等的实数根;=0 ,方程有两个相等的实数根;<0,方程无实数根。例1如果关于x的方程ax 2+x1= 0有实数根,则a的取值范围是( )Aa Ba Ca且a0 Da且a0例2若t是一元二次方程的根,则判别式和完全平方式的关系是( )A. =M B. >M C. <M D. 大小关系不能确定 4. 韦达定理: 例1:(8分)设x1、x2是方程2x2-4mx+2m2+3m-2=0的两个实根,当m为何值时,x12+x22有最小值?并求这个最小值。例2:若一个三角形的三边长均满足方程x2-6x+8=
12、0,则此三角形的周长为 _5. 可化为一元二次方程的分式方程。(分式方程要验根)例:;6、一元二次方程应用题(最大值、最小值问题)例:.某商店如果将进价为每件8元的某种商品按每件10元出售,每天可销售100件。为了增加利润,该商店决定提高售价,但该商品单价每提高1元,销售量要减少10件。问当售价定为多少时,才能使每天的利润最大?并求最大利润。7、一元二次方程和二次函数之间的关系 例1. 当m为何值时,抛物线与x轴有两个交点,有一个交点,无交点。 例2. 已知二次函数与x轴有两个交点,求m的取值范围。8、一元二次方程应用题 例1.如图,AO=OB=50cm,OC是一条射线,OCAB,一只蚂蚁由A
13、以2cm/s速度向B爬行,同时另一只蚂蚁由O点以3cm/s的速度沿OC方向爬行,几秒钟后,两只蚂蚁与O点组成的三角形面积为450cm2?六、易错点分析:易错点一:(概念)1) 判断方程是否为一元二次方程时,忽略二次项系数不为“0”. 如:下列关于x的方程中,是一元二次方程的有- ax2+bx+c = 0 x2+ 3x -5=0 2x2-x-3 = 0 x2-2+x3 = 02) 注意本单元在学习概念时,注意联系实际,加深对概念的理解与应用,避免就概念理解概念。 如:已知关于x的方程(m-n)x2 + mx+n=0,(m0),你认为:当m和n满足什么关系时,该方程为一元二次方程? 当m和n满足什么关系时,该方程为一元一次方程?3) 没有化成一般形式,混淆a、b、c.易错点二:(解法)(1) 因式分解法没注意方程没有写成A*B=0形式。如,解方程(x-1)(x-3)=8, 误解为 x1=1, x2=3.(2) 用公式法解方程时,没有化为一般式,造成符号错误或混淆a、b、c。 如,解方程x2-4x=2,误认为a=1,b=4,c=2.(3) 丢根。如,解方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沪科版八年级物理全一册《2.1声音的产生与传播》同步测试题含答案
- 高一化学第四单元非金属及其化合物第四讲氨硝酸硫酸练习题
- 2024届河南省淇县某中学高考模拟试卷(化学试题文)试卷含解析
- 2024高中地理第4章区域经济发展第2节第2课时问题和对策学案新人教版必修3
- 2024高中语文第四单元创造形象诗文有别赏析示例过小孤山大孤山学案新人教版选修中国古代诗歌散文欣赏
- DB37-T 5307-2024 住宅小区供水设施建设标准
- 肩周炎中医诊疗指南
- 深圳城市的发展历程
- 2025版:劳动合同法企业合规培训及风险评估合同3篇
- 三讲课件知识课件
- 3D打印行业研究报告
- 鲁教版(五四制)七年级数学下册电子课本教材
- 人教版八年级物理上册 1.5运动图像(专题练习)原卷版+解析
- 公共资源交易培训课件
- 护理实习针灸科出科小结
- 信息系统集成方案
- 推广智慧小程序方案
- 业主与物业公司调解协议书
- 燃气泄漏预警系统设计
- 肠易激综合症
- 神经根型腰椎病护理查房课件
评论
0/150
提交评论