11锐角三角函数(第1课时)教学设计1_第1页
11锐角三角函数(第1课时)教学设计1_第2页
11锐角三角函数(第1课时)教学设计1_第3页
11锐角三角函数(第1课时)教学设计1_第4页
11锐角三角函数(第1课时)教学设计1_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章 直角三角形的边角关系锐角三角函数(第1课时) 温丽萍 教学目标:1. 经历探索直角三角形中边角关系的过程.理解正切的意义和与现实生活的联系. 2.能够用表示直角三角形中两直角边的比,表示生活中物体的倾斜程度、坡度(坡比)等. 3.能够根据直角三角形的边角关系,用正切进行简单的计算.过程与方法: 1.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题. 2.体会解决问题的策略的多样性,发展学生的几何直观能力和符号感,发展学生观察、分析、发现问题的能力.教学重点:理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.教学难点:理解正切的意义,并用它来表示两边的比.教学过程

2、:第一环节 创设问题情境活动内容1:介绍世界文化遗产意大利比萨斜塔,激发学习兴趣我们都知道世界著名的建筑意大利比萨斜塔.但你知道比萨斜塔是如何倾斜的和倾斜角度是多少吗?如下图,小明说,只要测得垂直中心线、塔身中心线的长度及塔顶中心点偏离垂直中心线的距离这三个数据中的任意两个,他就可以计算出塔身倾斜角的大小.你想知道小明是如何做的吗?那么,我们一起来学习新知识吧.通过本章的学习,你就会明白小明这样做的道理.让学生初步从实际问题中去体会直角三角形的边角之间存在一定的关系,并通过这个活动,让学生留意身边的数学;初步感受到倾斜程度在生活中的随处可见,并可以用数学模型来描述.学生对小明的方法感到好奇,生

3、动的课堂引入激发了学生强烈的求知欲望.并能初步感受到倾斜程度是可以用数学方法来描述的.观察梯子的倾斜程度由活动1知道,倾斜的物体在生活中随处可见,那我们该如何判断物体的倾斜程度呢?大家都会用“陡峭”或“平缓”来描述.1.图11和图12中,这里摆放的两个梯子,你能辨别出那一个比较陡一些图11图12吗?你是如何判断的? 2.图13中,这里摆放的两个梯子,你能辨别出那一个比较陡一些吗?你又是如何判断的?图13表1对于图13,学生可能难于下手,这时老师可以借助几何画板的动态演示,引导学生比较对边与邻边的比值,即比较表一中的与大小,当、时,借助几何画板直观的验证梯子的倾斜程度,以突破学生认识上的障碍.(

4、为了方便研究,表格中的数据精确到十分位)先让学生从图1-1和图1-2中直观感受梯子的倾斜程度,再让学生理性思考该如何寻找方法判断图1-3中梯子的倾斜程度.这样学生会感到知识上的匮乏,从而对数学产生好奇心和求知欲.让他们从实例中体会不同情况下比较梯子的倾斜程度只靠直观感受是不够的,还需要其他方法用边的比进行比较.学生可以很快用不同的方法从图11和图12中分辨出哪个梯子更陡.但对于图13,学生则普遍感到有一定难度.教师通过运用几何画板的演示活动,引导学生比较对边与邻边的比,来比较梯子的倾斜程度.学生会发现这是个新的知识,需要利用这个新的知识来认识梯子的倾斜程度,这为引入本节课的知识点正切值埋下了伏

5、笔. 第二环节 探求新知在小明家的墙角处放有一架较长的梯子,墙很高,又没有足够长的尺来测量,你有什么巧妙的方法得到梯子的倾斜程度呢?图14如图1-4,小明想通过测量及,算出它们的比,来说明梯子的倾斜程度;而小亮则认为通过测量及 ,算出它们的比,也能说明梯子的倾斜程度.你同意小亮的看法吗?(1)和有什么关系?(2)和有什么关系?(3)如果改变在梯子上的位置呢? 由此你得出什么结论?通过对前面问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度.这个活动旨在说明,当倾斜角确定时,其对边与邻边之比也随之确定.这一比值只与倾斜角度有关,而与直角三角形的大小无关.学生能借助三角形相似

6、的知识理解两个比的关系,通过简单推理获得结论:,并能发现如果改变在梯子上的位置,仍有.能理解这个关系之所以不变,是由于锐角不变的原因,为学生理解下面的知识:用对边与邻边的比来定义正切,奠定了基础. 结合活动内容1,请同学们思考:既然直角三角形中,一个锐角一旦确定,它的对边与邻边的比也随之确定.那么这个确定的比我们能不能用一个数学符号来表示呢?我们把这个确定的比叫做一个锐角的正切.如图15,我们把的对边与的邻边的比,叫做的正切(tangent),记作. 图15的邻边的对边对于正切的定义,同学们必须明确以下几点:1. 中常省略角的符号“”.用希腊字母表示角时也可省略如:、等.但用三个字母表示角和用

7、阿拉伯数字表示角时,不能省略角的符号“”,要写成或、等;2、没有单位,它表示一个比值;3、是一个完的整数学符号,不可分割,不表示“”乘以“”;4、一个角的正切是在直角三角形中定义的,因此,只能在直角三角形中适用; 梯子的倾斜程度与的值有关吗?的值越大,梯子越陡通过对直角三角形中边角关系的探索,合理的引出正切的定义;通过对定义的辨析,发展学生的符号感;通过探究梯子的倾斜程度与的值的关系,渗透数形结合的数学思想;进一步体会正切的意义和与现实生活的联系.通过观察、探索梯子的倾斜程度自然的引出了正切的定义,能理解规定的合理性,经历了由形到数的过程;通过探索结论“的值越大,梯子越陡”体验了由数到形的过程

8、,体会到利用数形结合的思想是解决数学问题的常用方法.第三环节 应用与拓展例题1:图16表示甲、乙两个手扶电梯,哪个手扶电梯比较陡?图16 通过计算正切值判断梯子的倾斜程度,这是对第二环节中得出结论的直接运用,旨在巩固正切的定义以及发展学生的数学应用意识.体验数形之间的联系,逐步学习利用数形结合的思想分析问题和解决问题,提高解决实际问题的能力图17学生经历了观察、探索等数学活动过程,发展了合情推理的能力,并都能通过简单的计算得出结论,而且能有条理、清晰地阐述自己的观点.认识坡角、坡度(坡比)坡角:坡面与水平面的夹角;坡度(坡比):坡面的铅垂高度与水平宽度的比,因此坡度(坡比)就是坡角的正切. 如

9、图17,有一山坡在水平方向上每前进100米就升高60,那么山坡的坡角是,坡度(坡比)就是:认识坡角、坡度(坡比),理解坡度(坡比)其实质就是坡角的正切.体会数学与实际生活的联系.通过工程学上的例子,学生能理解正切、倾斜程度、坡度的数学联第,加强了数学与生活的联系,发展了学生的数学应用意识.第四环节 变式练习1、如图18,在中,若,则= ; 2、如图19,在中,则 ; 图18图193、如图110,某人从山脚下的点走了200m后到达山顶的点.已知山顶到山脚下的垂直距离是55m.求山坡的坡度(结果精确到0.001m).图110为学生运用新知识解决与直角三角形有关的实际问题提供资源,并将进一步感受数形结合的思想,体会数形结合的方法.让学生尝试用正切表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,学会运用正切的定义进行简单的计算.以上3个例题都是基础题,其中第2题学生需要添加简单的辅助线,加深了学生对正切的理解,体会到正切是在直角三角形中定义的,因此使用的前提必须是在直角三角形中使用.第五环节 课堂小结师生互相交流总结本堂课所学的知识点和体会

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论