下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、未决赔款准备金估计方法的最新进展 在每个会计年度末,保险公司都会有一定数量的未决赔案。发生未决赔案的原因是由于在保险事故的发生、报告和理赔之间存在“时间延迟”。这种延迟可分为“报损延迟”和“理赔延迟”两种主要形式,延迟时间少则几天,多则数年。未决赔款是非寿险公司财务报表上的一项重要负债。为了保证保险公司的偿付能力,保险人在进行会计年度决算时,必须按照已经发生、应当支付但由于种种原因未能及时支付的未决赔款金额的总和,在当年的保费收入中提存足够的支付准备金。我们将这种为支付未决赔款而提存的准备金称为未决赔款准备金(Outstanding
2、160;Loss Reserve)。未决赔款包括三部分:(1)已经报告及理算,但尚未支付的赔款金额;(2)已经报告,但未理算的估计赔金,其原因可能是保险公司还来不及定损,或是双方对责任范围或赔付金额尚有争议;(3)已经发生但未报告的估计赔偿金额(IBNR:Incurred But Not Reported)。一、未决赔款准备金的估计方法未决赔款准备金对非寿险公司来说是最为重要的负债项目之一,如何科学准确地对其进行估算具有非常重要的意义。为此,国内许多学者都对此做了研究。李中杰、孟生旺和袁卫对未决赔款准备金的
3、估计作了详细的论述,并给出了具体的计算实例。吴清华从未决赔款准备金估算和管理中存在的问题出发,提出了加强未决赔款管理工作的具体措施,张徐和闫建军对我国常用的几种估算方法进行了较系统的评价。下面简要对现有未决赔款准备金的估计方法进行总结。1.逐案估计法(Case-By-Case Estimating Method)。就是理赔人员对已经报告的全部赔案进行逐案分析判断,作出每案赔款额的估计数,然后汇总得出总的未决赔款估计数。基本思想:检查赔偿案件的登记表,由理赔人员对尚未解决的案件进行分析,估计每案的赔款额,加上少数尚未报告的赔偿案件的估计金额,汇总即得未
4、决赔款准备金数额,然后加以适当的修正。这种方法对索赔金额确定、索赔频率较低、个案之间索赔金额差异较大、平均索赔金额难以估算的险种较为适合,如企财保险、火灾、信用保证险等。对其他险种,如机动车辆保险和家庭财产保险,该方法就不一定适合。此方法几乎完全凭估算人的主观判断,而事实上任何案件都要有损失理赔人和当事人的磋商,任何悲观和乐观的人为因素都会造成估计偏差,另外由于还要考虑很多诸如通货膨胀、理赔后果等非人为因素,估计数额也难免有偏差,而且此方法耗时费力工作量大,无法对(IBNR)的未决赔款进行统计。2.保费比例法。基本思想:就是按照本年度保费总收入的一定比例来估算未决赔款。据了解,目前国内只有个别
5、保险公司采用这一办法,提取比例大概是本年度保费收入的10%左右。用保费比例法的优点是简洁、明了,但是这一方法缺少科学依据,可靠性较差。3.平均法。基本思想:依据保险公司的历史数据计算出每案赔款额的平均数,再根据对将来赔付金额变动趋势的预测加以修正。这一方法不依据个人主观判断,适用于索赔案多但索赔金额不大的保险业务,这些待决案件的金额大体相同,或其金额有大体相当的配比率,如汽车车身保险。但平均价值法将赔款的持续时间计算在内,所得的平均赔付额随赔款持续时间的变化而变化,因而此法不适合理赔延迟时间较长的险种。4.赔付率法。基本思想:用该类保险所假定的赔款率来计算最终赔付数额,未决赔款额是从估计的最终
6、赔付额中扣除已支付的赔款和相关理赔费用而得出。如汽车车体责任保险,实践中一般用60%的估计赔付率,最终赔付额是满期保费的60%,再减去已付的赔款及理赔费用的余额,即为未决赔款准备金。这种方法简单易行,但假定的赔付率和实际的赔付率可能有较大的出入,此时按该方法计算出的准备金不准确。由于假定的赔付率和实际的赔付率必然有出入,所以本法无法回避它的自身缺陷。5.链梯法(Chain Ladder Method)。基本思想:与平均法非常接近,它是在流量三角形(Run-off Triangle)的基础上最早发展起来的一种方法,它依据流量三角形
7、中的各列的比例关系来外推预测未来索赔数据的值。保险公司将索赔数据(如赔付额、索赔次数、逐案估计值等)按照保险事故发生的年度和赔付额支出的年度进行交叉排列,组成三角形的格式,此表格被称为流量三角形。流量三角形从左下角到右上角的对角钱上的元素代表在每一日历年度的赔付额。链梯法的基本假设为:不存在外来影响因素,诸如通货膨胀、未满期保险责任组成的变化、结算率的变化以及法律规定的变化等等;在出险与其理赔之间的延迟时间上的分配相对稳定,每一案发年的赔款支付方式稳定。链梯法计算简单方便,而且当实际情况与上述假定吻合时,预测结果较为精确。但是,当实际数据与假设条件不符时,它还存在以下不足:(1)有偏估计。链梯
8、法要求各变量间是相互独立的,但实际各变量间存在一定的关联性,所以通常得出的估计为有偏估计。(2)稳健性较差。链梯法对于观察值的变化极为敏感,即便是个别数据的变化,都会对估计结果造成较大的影响。(3)忽略了外来影响因素。在实用时则必须考虑诸如通货膨胀、未满期保险责任组成的变化等因素影响。为此,研究人员对基本的链梯估算法进行了改进,主要有以下三种形式:(1)考虑通货膨胀的链梯估算法。用通货膨胀率将所有各年的赔款支出折合为“不变价格”,并依此进行计算;然后将所得各量换算为现值。(2)改进的链梯估算法。在考虑通货膨胀因素的基础上,再考虑保险公司理赔政策的修改、有关法律规定的变化等,用不同年份的结算率的
9、差别来改进原来的计算。(3)“伦敦链”直线法。引入线性回归的思想进行赔款额直线的拟合,并据此求出各起始年对应的最终赔款额的估计值。6.平均赔付额法。链梯估算法虽然进行了许多改进,但它仅仅是根据赔付额数据预测保险公司的未决赔款,而忽略了索赔次数数据,这事实上造成了部分信息的损失。平均赔付额法可以将索赔次数考虑在内。平均赔付额是指赔付额与索赔次数的比率。平均赔付额模型根据索赔次数不同的统计口径可分为以下两种情形:(1)PPCI(Payments Per Claim Incurred)。已发生索赔的平均赔付额,其中的索赔次数是指已经发
10、生的索赔(包括已经发生但未报告的索赔IBNR)。(2)PPCF(Payments Per Claim Finalized)。已结案索赔的平均赔付额,其中的索赔次数是指已结案索赔次数。利用平均赔付额法估计未决赔款准备金时,要求假设不同事故发生年的平均赔付额是相对稳定的。二、未决赔款准备金估计方法的最新进展由于未决赔款准备金的估计包含众多的随机影响因素。近年来,在国际精算学界,很多研究人员利用现代概率统计的理论和方法,对此问题进行了深入的研究,如Verrall、Scollinik、Ioannis Ntzoufr
11、as等在North American Actuarial Journal和Insurance:Mathematics and Economics等精算学国际一流杂志上发表论文,从不同角度对未决赔款准备金的估计作了研究,方法上取得了许多进展。现有的未决赔款准备金估计方法,如逐案估计法、保费比例法、平均法和赔付率法大都只基于当前已获得的信息,而没有考虑索赔金额未来可能发生的变化,计算方法过于简单。而链梯法和平均赔付额法,虽然采用了一定的预测模型、估计参数的统计思想,但对隐藏在历史数据的信息
12、深入挖掘不够,所以最终的预测结果的误差也较大。为了充分利用历史数据中的信息,提高未决赔款准备金估计的预测精度,Ioannis Ntzoufras和Petros Dellaportas将贝叶斯理论和MCMC(Markov Chain Monte Carlo)方法引入了未决赔款准备金的估计,使未决赔款准备金的估计方法取得了重大进展。贝叶斯思想和方法被大量地引入到精算学中,应归功于Buhlmann和Straub发表在ASTIN Bulletin上的经典论文Buhlman
13、n。Buhlmann和Straub为经验贝叶斯信用方法奠定了基础,这一方法现在仍然被广泛地使用在精算学的各个领域中。贝叶斯推断的基本方法是将关于未知参数的先验信息与样本信息综合,再根据贝叶斯定理,得出后验信息,然后根据后验信息去推断未知参数。MCMC方法,可以称得上是对贝叶斯统计的一次革命。它是最近发展起来的一种简单且行之有效的贝叶斯计算方法。MCMC方法主要由Metropolis-Hastings算法和Gibbs抽样组成,其基本思想是;通过重复抽样,建立一个平稳分布为所求后验分布的Markov链,从而得到后验分布的样本,基于这些样本再作各种统计推断。它在精算学中的使用越来越广泛,随着新问题的
14、不断出现,MCMC方法的研究也日益增多。在Ioannis Ntzoufras和Petros Dellaportas的文章中,作者将贝叶斯理论用于未决赔款准备金估计问题的四个模型中,在模型的求解中采用MCMC方法。(1)对数正态模型(Log-Normal Model)。在此模型中,先对流量三角形中的赔付额数据按照通货膨胀率进行折算,然后取对数进行调整,最后,假设所得数据服从正态分布建立模型。在模型的求解中,假设各参数的先验分布为正态分布和伽玛分布,然后利用贝叶斯方法求解。(2)对数正态多元模型(Log-Normal
15、160;Multinomial Model)。在模型(1)的基础上,对数正态多元模型进一步考虑了索赔次数的信息,假定所求参数服从多元分布。模型的解法与(1)类似。(3)赔付额的状态空间模型(State Space Modelling of Claim Amounts)。状态空间模型也称作动态线性模型(Dynamic Linear Model),它是由两个方程确定的模型:一方程描述过程的观测如何随机地依赖于当前得到状态参数
16、;另一方程描述状态参数如何随时间变化,表示了系统内部的动态变化和随机扰动。模型通过迭代算法,引入先验分布求解。(4)平均赔付额的状态空间模型(State Space Modelling of Average Claim Amounts Per Accident)。此模型对模型(3)进行了推广,进一步考虑了索赔次数的信息,假定所求参数服从多元分布。模型解法与(3)类似。以上四个模型,模型(2)和模型(4)要优于模型(1)和
17、模型(3)。因为模型(2)和模型(4)是模型(1)和模型(3)的推广,不仅考虑了赔付额的数据,而且还考虑了索赔次数的信息。在未决赔款准备金估计方法的应用方面,重点不在于数据的拟合,而在于数据的预测,所以,比较模型优劣的一个显著标准是比较模型之间的预测精度。三、我国未决赔款准备金估计方法研究的建议1.重视非寿险精算的教育工作。目前,在我国非寿险精算的教育几乎刚刚起步,与寿险精算教育相比,非寿险精算的教育还比较落后,非寿险精算人员也相对匮乏。这种状况与我国非寿险业务在我国保险业中的地位和其飞速发展的形势很不协调。高等院校的相关系所应当给予高度重视,加强非寿险精算的教育工作。在教学中,应强化学生的数理基础,加大在数理方法方面的应用。现在国外精算学研究人员已普遍采用数理模型进行精算研究,没有深厚的数理基础,难以与国际进行交流。2.加强非寿险精算的研究工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩教育活动总结(15篇)
- 幼儿书籍的读书心得
- 快递公司实习心得
- 第四单元+提高创新思维能力+练习(B卷) 高中政治统编版选择性必修三逻辑与思维
- 地球的自转+训练题 高二地理湘教版(2019)选择性必修1
- 针灸联合补阳还五汤加减治疗颈腰椎病的临床价值
- 心理拓展训练心得体会(范文7篇)
- 初级会计实务-初级会计《初级会计实务》模拟试卷378
- 星载AIS系统解交织关键技术研究
- 2025版汽车修理厂租赁及维修服务一体化合同3篇
- 垃圾处理厂工程施工组织设计
- 天疱疮患者护理
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 2025年蛇年新年金蛇贺岁金蛇狂舞春添彩玉树临风福满门模板
- 《建筑制图及阴影透视(第2版)》课件 4-直线的投影
- 2024年印度辣椒行业状况及未来发展趋势报告
- 2024-2030年中国IVD(体外诊断)测试行业市场发展趋势与前景展望战略分析报告
- 碎纸机设计说明书
评论
0/150
提交评论